
A THREE DIMENSIONAL NON-SINGULAR MODELLING OF RIGID MANIPULATORS (U) NAVAL POSTGRADUATE SCHOOL MONTEREY CA AD-A189 797 1/2 F/G 12/9 UNCLASSIFIED NĮ,

AD-A189 707

NAVAL POSTGRADUATE SCHOOL Monterey, California

THESIS

A THREE DIMENSIONAL NON-SINGULAR MODELLING OF RIGID MANIPULATORS

by

Sadrettin Altinok

December 1987

Thesis Advisor

D. L. Smith

Approved for public release; distribution is unlimited.

CECTION V	CLASSIFICATION	OF THIS PAGE
3E_URI: 7	CTW33ILICW LICHA	OF INTO PAGE

- ADAI89707

	SIFICATION OF		REPORT DOCUM	MENTATION	PAGE	المرسوس في بطوا	
18. REPORT SECURITY CLASSIFICATION UNCLASSIFIED			16 RESTRICTIVE MARKINGS				
2a. SECURITY	CLASSIFICATIO	N AUTHORITY		3 DISTRIBUTION	AVAILABILITY OF	REPORT	
26. DECLASSIF	ICATION / DOW	NGRADING SCHEDU	LE		R PUBLIC RELE N IS UNLIMITE		
4 PERFORMIN	G ORGANIZAT	ION REPORT NUMBE	R(S)	5 MONITORING	ORGANIZATION RE	PORT NUMB	SER(S)
	PERFORMING O	ORGANIZATION E SCHOOL	65 OFFICE SYMBOL (If applicable) 69	1	ONITORING ORGAN GRADUATE SCHO		
6c. ADDRESS	City, State, and	d ZIP Code)		3	ty, State, and ZIP Co		
MONTERE	r, CALIFOR	NIA 93943-50	00	MONTEREY,	CALIFORNIA 9	3943-51	00
8a. NAME OF ORGANIZA	FUNDING SPO TION	INSORING	8b. OFFICE SYMBOL (If applicable)	9. PROCUREMEN	T INSTRUMENT IDE	NTIFICATION	NUMBER
Bc. ADDRESS (City, State, and	ZIP Code)	<u> </u>	10 SOURCE OF	FUNDING NUMBERS		
				PROGRAM ELEMENT NO.	PROJECT NO	TASK NO	WORK UNIT ACCESSION NO
A THREE			AR MODELLING OF	RIGID MANIP	ULATORS		
12 PERSONAL		SADRETTIN ALT	INOK				
13a. TYPE OF MASTERS	REPORT	13b TIME CO FROM		14 DATE OF REPO	ORT (Year, Month, D EMBER	lay) 15 PA	AGE COUNT .C.6
16 SUPPLEME	NTARY NOTAT	iON					
17	COSATI	CODES	18 SUBJECT TERMS (
FIELD	GROUP	SUB-GROUP	ROBOTICS, ROBO				LLING
There are several common approaches used to obtain the kinematic and dynamic equations which describe the motion of robot manipulators. However, a problem arises when these conventional body oriented robot arm kinematic equations are used to simulate the manipulator motion. In this case, the jacobian matrix which relates the end effector motion to joint angle variations becomes singular when two succesive arm links align. When the robot arm passes through these singular points, the jacobian matrix is not invertible, and a result of this, the motion cannot be simulated. This thesis investigates how this situation can be avoided by using a Newton Euler approach to variable definition, and using the equations interpretted in a fixed reference frame. 20 DISTRIBUTION/AVAILABILITY OF ABSTRACT BUNCLASSIFIED UNCLASSIFIED UNCLASSIFIED LINCLASSIFIED LIN							
DAVID SA		INDIVIDUAL		(408)646-33	(include Area Code) 83	69Sm	E SYMBOL
DULID N				1, 100,000		1	

DD FORM 1473, 84 MAR

83 APR edition may be used until exhausted All other editions are obsolete

SECURITY CLASSIFICATION OF THIS PAGE
TUS GOVERNMENT PURILING DIVINE 1988-488-24.

Approved for public release; distribution is unlimited.

A Three Dimensional Non-Singular Modelling of Rigid Manipulators

by

Sadrettin Altinok 1st. Lieutenant, Turkish Army B.S., Turkish Army Academy, 1981

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN MECHANICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL December 1987

Author:	With	
	Sadrettin Altinok	
Approved by:	David Fritte	
	D.L. Smith, Thesis Advisor	
	bull thal	
	A.J. Healey, Chairman,	
	Department of Mechanical Engineering	
	If charles	
	G.E. Schacher,	
	Dean of Science and Engineering	

ABSTRACT

There are several common approaches used to obtain the kinematic and dynamic equations which describe the motion of robot manipulators. However, a problem arises when these conventional body oriented robot arm kinematic equations are used to simulate the manipulator motion. In this case, the locobian matrix which relates the end effector motion to joint angle variations becomes singular when two successive arm links align. When the robot arm passes through these singular points, the jacobian matrix is not invertible, and a result of this, the motion cannot be simulated. This thesis investigates how this situation can be avoided by using a Newton Euler approach to variable difinition, and using the equations interpretted in a fixed reference frame.

Accesio	n For	1
NTIS DTIC Unanni Justific	ounced E	5
By	ition/	
A	vailability Code	s
Dist	Avail and for Special	
A-1		

TABLE OF CONTENTS

I.	IN'	TRODUCTION	25
II.	THI	EORETICAL DEVELOPMENT	28
	A.	THEORY OF THE SOLUTION	28
	В.	DYNAMIC EQUATIONS OF MOTION FOR LINK ONE	30
		1. Force Equations	30
		2. Joint Equations	31
		3. Moment Equations	32
	C.	DYNAMIC EQUATIONS OF MOTION FOR LINK TWO	36
		1. Force Equations	36
		2. Joint Equations	37
		3. Moment Equations	39
	D.	DYNAMIC EQUATIONS OF MOTION FOR LINK THREE	41
		1. Force Equations	41
		2. Joint Equations	41
		3. Moment Equations	43
III.	CO	APUTATIONAL APPROACH	45
	A.	PROGRAM MATRICIES	45
	B.	CONSTRAINTS IN THE SIMULATION PROGRAM	50
	C.	PROGRAM VALIDATION	52
IV.	RES	BULTS AND RECOMMENDATIONS	61
APPEI	NDI	K A: DERIVATION OF THE TRANSFORMATION	
		MATRIX	63
APPEI	NDI	K B: DIRECT DYNAMICS SIMULATION PROGRAM 1	67

APPENDIX	X C:	DIRECT	DYNAMIC	S SIMULATI	ION PROGRAM	2	 • • •	. 83
LIST OF	REF	ERENCES	· · · · · · · ·				 • • •	. 101
INITIAL	DIST	TRIBUTIO	N LIST				 	. 104

LIST OF FIGURES

1.	Free Body Diagram of a Three Link Manipulator	29
2.	Computer Simulation Flow Chart	46
3.	Matrix Entries	47
4.	Moment of Inertia	51
5.	Validation Procedure Flow Chart	54
6.	Initial Orientation of Links for Validation	55
7.	Configuration A, Link 2 Wx Motion	57
8.	Configuration A, Link 2 Wz Motion	58
9.	Percent Error Between Theoretical and	
	Simulated Angles	59
10.	Critical Angles	66

TABLE OF THE SYMBOLS AND ABBREVIATIONS

COMPUTER	TEXT	DESCRIPTION
SYMBOL	VARIABLE	
A	A	Sine Wave Input Torque
		Amplitude
AA	Aa	Acceleration of Point A
AB	Ab	Acceleration of Point B
AG1	Ag1	The Acceleration Vector
		of the Center of Gravity
		for Link 1
AG2	Ag2	Same as AG1 but for Link
		2
AG3	Ag3	Same as AG1 but for Link
		3
AOX	aox	Linear Acceleration of
		Joint Zero in the X
		Direction
AOY	aoy	Linear Acceleration of
		Joint Zero in the Y
		Direction
AOZ	aoz	Linear Acceleration of
		Joint Zero in the Z
		Direction

AX1	ax1	Linear Acceleration	of
		Link One in the X	
		Direction	
AY1	ayl	Linear Acceleration	of
		Link One in the Y	
	•	Direction	
AZ1	azl	Linear Acceleration	of
		Link One in the Z	
		Direction	
AX2	ax2	Linear Acceleration	of
		Link Two in the X	
		Direction	
AY2	ay2	Linear Acceleration	of
		Link Two in the Y	
		Direction	
AZZ	az2	Linear Acceleration	of
		Link Two in the Z	
		Direction	
AX3	ax3	Linear Acceleration	of
		Link Three in the X	
		Direction	
AY3	ауЗ	Linear Acceleration	of
		Link Three in the Y	
		Direction	

•

The state of the s

AZ3	az3	Linear Acceleration of
		Link Three in the Z
		Direction
BRATE1(3)	Brate1	Angular Velocity Vector
		in Body Fixed (rotating)
		Coordinate System for
		Link 1 in the x, y and z
		Direction Respectively
BRATE2(3)	Brate2	Same as Bratel but for
		the Link 2
BRATE3(3)	Brate3	Same as Bratel but for
		the Link 3
DEGRA		Conversion from Degrees
		to Radians
DRCANX(1)		Direction Cosine Angle
DRCANX(2)		in Degrees in Fixed
DRCANX(3)		Coordinate System from X
		Axis for Link 1-3
		Respectively
DRCANY(1)		Direction Cosine Angle
DRCANY(2)		in Degrees in Fixed
DRCANY(3)		Coordinate System from Y
		Axis for Link 1-3
		Respectively
DRCANZ(1)		Direction Cosine Angle
DRCANZ(2)	,	in Degrees in Fixed

DRCANZ(3)	Coordinate System from Z
	Axis for Link 1-3
	Respectively
DRCRAX(1)	Direction Cosine Angle
DRCRAX(2)	in Radians in Fixed
DRCRAX(3)	Coordinate System from
	X Axis for Link 1-3
	Respectively
DRCRAY(1)	Direction Cosine Angle
DRCRAY(2)	in Radians in Fixed
DRCRAY(3)	Coordinate System from
	Y Axis for Link 1-3
	Respectively
DRCRAZ(1)	Direction Cosine Angle
DRCRAZ(2)	in Radians in Fixed
DRCRAZ(3)	Coordinate System from
	Z Axis for Link 1-3
	Respectively
DRCSX(1)	The Argument of Direction
DRCSX(2)	Cosine Angle in the x
DRCSX(3)	Direction for Link 1-3
	Respectively
DRCSY(1)	The Argument of Direction
DRCSY(2)	Cosine Angle in the y
DRCSY(3)	Direction for Link 1-3
	Respectively

DRCSZ(1)		The Argument of Direction
DRCSZ(2)		Cosine Angle in the z
DRCSZ(3)		Direction for Link 1-3
		Respectively
DQ(27)	DQ	A 27*1 Column Matrix
		Obtained by Multiplying
•		the MatA and MatB
FXO	Fxo	Computed Force in the X
		Direction at Joint O
FYO	Fyo	Computed Force in the Y
		Direction at Joint O
FZO	Fzo	Computed Force in the Z
		Direction at Joint O
FX1	Fx1	Computed Force in the X
		Direction at Joint 1
FY1	Fy1	Computed Force in the Y
		Direction at Joint 1
FZ1	Fz1	Computed Force in the Z
		Direction at Joint 1
FX2	Fx2	Computed Force in the X
•		Direction at Joint 2.
FY2	Fy2	Computed Force in the Y
		Direction at Joint 2
FZ2	Fz2	Computed Force in the Z
		Direction at Joint 2
G	g	Gravitional Constant

HDX(2)	HDx	The Time Rate of Change
		of Angular Momentum of a
		Two Elements Composite
		Body in the X Direction
HDY(2)	HDy	Same as HDX but in the Y
		Direction
HDZ(2)	HDz	Same as HDX but in the Z
		Direction
I		Counter
IA		Row Dimension of Matrix
		A and Matrix B Used in
		LEQ2TF Subroutine
IER		Error Parameter Used in
		Subroutine LEQT2F
IDGT		Accuracy Test Used in
		Subroutine LEQT2F for
		Iterative Improvement
IXX(3,2)	Ixx	A 3*2 Matrix of Moment
		of Inertia for the Two
		Element Composite Body
		of Link 1-3 About X Axis
IYY(3,2)	Iyy	Same as IXX but About
		the Y Axis
IZZ(3,2)	Izz	Same as IXX but About
		the Z Axis

IXZ(3,2)	Ixz	A 3*2 Matrix of Products
		of Inertia for the Two
		Element Composite Body
		of Link 1-3 About the XZ
		Coordinate Axis
IXY(3,2)	Ixy	Same as IXZ but for the
		XY Axis
IYZ(3,2)	lyz	Same as IXZ but for the
		YZ Axis
IXXT(3)		Total Moment of Inertia
		of Link 1-3 About X Axis
IYYT(3)		Same as IXXT but About
		the Y Axis
IZZT(3)		Same as IXXT but About
		the Z Axis
IXZT(3)		Same as IXXT but About
		the XZ Axis
IXYT(3)		Same as IXXT but About
		the XY Axis
IYZT(3)		Same as IXXT but About
		the YZ Axis
JXO	jxo	Location of Joint Zero
		in the X Direction
JYO	jyo	Location of Joint Zero
		in the Y Direction

JZO	jzo	Location of Joint Zero
	<u>.</u>	in the Z Direction
JX1	jx1	Location of Joint One in
		the X Direction
JY1	jy1	Location of Joint One in
		the Y Direction
JZ1	jz1	Location of Joint One in
,		the Z Direction
JX2	jx2	Location of Joint Two in
		the X Direction
JY2	ју2	Location of Joint Two in
		the Y Direction
JZ2	jz2	Location of Joint Two in
		the Z Direction
L(3,2)	L(3,2)	A 3*2 Matrix that is the
		Distance from Center of
		Link to Center of Mass at
		Each Link End
LCOGX(3)	LCOGx	A 1*3 Location of Center
		of Gravity Vector for
		Link 1-3 in the X
		Direction
LCOGY(3)	LCOGy	Same as LCOGX but for
		the Y Direction
LCOGZ(3)	LCOGz	Same as LCOGX but for
		the Z Direction

М		Number of the Right Hand
		Side Used in LEQT2F
MASS(3,2)	Mass(3,2)	A 3*2 Matrix of Mass of
		Each Element that Make
		Up the Composite Body
		for Link 1-3
MASS1	M1	Total Mass of Link 1
MASS2	M2	Total Mass of Link 2
MASS3	мз	Total Mass of Link 3
MATA(27,27)	MatA	A 27*27 Matrix Consisting
		of Coefficients of the
		Unknown Variables
MATB(27)	MatB	A 27*1 Vector Consisting
		of the Coefficient of
		Known Variables on Input
		and an Output the Solut-
		ion to the Linear Equat-
		ions
MATC(27)	MatC	A 27*1 Column Matrix
		which Contains the
	•	Elements of the Known
		MatB in Simulation
		Process,
MAT1R,	Matlr	Transformation Matricies
MAT2R,	Mat2r	from Fixed Coordinate

MAT3R	Mat3r	System to Body Fixed
		(Rotating) Coordinate
		System for Link 1 Link 2
		and Link 3 Respectively
MAT1T,	Mat1t	Transformation Matricies
MAT2T,	Mat2t	from Body Fixed
MATST	Mat3t	Coordinate System to Yaw
		Pitch and Roll Angles
		Coordinate System for
		Link 1 Link 2 and Link 3
		Respectively
MI		Results From Subroutine
		CPROD, I Component of
		Vector Cross Product
MJ		J Component of Vector
		Cross Product
MK		K Component of Vector
		Cross Product
MIAO, MJAO		Cross Product Between
and MKAO		WD1 and RB/G1 at Joint
•		Zero Link One, in X, Y, Z
		Direction
MIBO, MJBO		Cross Product Between
and MKBO		W1 and RB/G1 at Joint
		Zero Link One, in X, Y, Z
		Direction

MICO, MJCO	Cross Product Between
and MKCO	W1 and MIBO, MJBO, MKBO
	at Joint Zero Link One,
	in X, Y, Z Direction
MIA1,MJA1	Cross Product Between
and MKA1	WD1 and RA/G1 at Joint
	One Link One, in X, Y, Z
	Direction
MIB1,MJB1	Cross Product Between W1
and MKB1	and RA/G1 at Joint One
	Link One, in X, Y, Z
	Direction
MIC1, MJC1	.Cross Product Between W1
and MKC1	and MIB1, MJB1, MKB1 at
	Joint One Link One, in X,
	Y, Z Direction
MIA2,MJA2	Cross Product Between
and MKA2	WD2 and RB/G2 at Joint
	One Link Two, in X, Y, Z
	Direction
MIB2,MJB2	Cross Product Between W2
and MKB2	and RB/G1 at Joint One

Link Two, in X, Y, Z

Direction

MIC2, MJC2	Cross Product Between W2
and MKC2	and MIB2, MJB2, MKB2 at
	Joint One Link Two, in X,
	Y, Z Direction
MIA3,MJA3	Cross Product Between
and MKA3	WD2 and RA/G2 at Joint
	Two Link Two, in X, Y, Z
	Direction
MIB3,MJB3	Cross Product Between W2
and MKB3	and RA/G2 at Joint Two
	Link Two, in X, Y, Z
	Direction
MIC3,MJC3	Cross Product Between W2
and MKC3	and MIB3, MJB3, MKB3 at
	Joint Two Link Two, in X,
	Y, Z Direction
MIA4,MJA4	Cross Product Between
and MKA4	WD3 and RA/G3 at Joint
	Two Link Three, in X, Y,
	Z Direction
MIB4,MJB4	Cross Product Between W3
and MKB4	and RA/G3 at Joint Two
	Link Three, in X, Y, Z
	Direction

MICA MICA		Cross Product Between W3
MIC4,MJC4		and MIB4, MJB4, MKB4 at
and MKC4		
		Joint Two Link Three, in
	·	X, Y, Z Direction
N		Order of MATA and # of
		Rows in MATB
P		Phase Angle of Sine Wave
PTRY(1)	•	Pitch Angle in Radians
PTRY(2)		for Link 1-3 Respectively
PTRY(3)		
PTCANY(1)		Pitch Angle in Degrees
PTCANY(2)		for Link 1-3 Respectively
PTCANY(3)		
RADEG		Conversion from Radians
		to Degrees
RATE1(3)	Rate1	Angular Velocity Vector
·		in Yaw Pitch and Roll
		Coordinate System for
		Link 1 in the x, y and z
		Direction Repectively
RATE2(3)	Rate2	Same as Ratel but for
		the Link 2
RATE3(3)	Rate3	Same as Ratel but for
		the Link 3

RX(3,2)	Rx(3,2)	A 3*2 Matrix Consisting
		of the Distance from the
		COG of the Link to Center
•		of for Elements of Link
		1-3 in the X Direction
RY(3,2)	RY(3,2)	Same as RX(3,2) but in
	•	the Y Direction
RZ(3,2)	Rz(3,2)	Same as RX(3,2) but in
		the Z Direction
RAG1(3)	ra/G1	A 1*3 Vector, Distance
		of Point A to COG for
•		Link One, in X, Y, Z
		Direction
RBG1(3)	rb/G1	A 1*3 Vector, Distance
		of Point B to COG for
		Link One, X, Y, Z Direct-
		ion
RAG2(3)	ra/G2	A 1*3 Vector, Distance of
		Point A to COG for Link
		Two, in X, Y, Z Direction
RBG2(3)	rb/G2	A 1*3 Vector, Distance of
		Point B to COG for Link
		Two, in X, Y, Z Direction

RBG3(3)	rb/G3	A 1*3 Vector, Distance of
-		Point B to COG for Link
		Three, in X, Y, Z
		Direction
RLRZ(1)		Roll Angle in Radians for
RLRZ(2)		Link 1-3 Respectively
RLRZ(3)		
ROLANZ(1)		Roll Angle in Degrees for
ROLANZ(2)		Link 1-3 Respectively
ROLANZ(3)		
SUMHDX(3)	HDx	A 1*3 Vector, Sum of the
		HDX for the Two Elements
		of Link 1-3 in the X
		Direction
SUMHDY(3)	HDy	Same as HDX but in the Y
		Direction
SUMHDZ(3)	HDz	Same as HDX but in the Z
		Direction
TOX, TOY,	Tox, Toy	Input Torque at Joint 0
TOZ	Toz	in X, Y, Z Direction
T1X,T1Y	T1x,T1y	Input Torque at Joint One
T1Z	T1z	in X, Y, Z Direction
T2X,T2Y	T2x,T2y	Input Torque at Joint Two
T2Z	T2z	in X, Y, Z Direction
TIPX, TIPY		Position of the End

TIPZ		Effector
VECTAO(3)		1*3 Vector Used in Subro-
VECTBO(3)		utine CPROD for Joint
		Zero
VECTA1(3)		1*3 Vector Used in Subro-
VECTB1(3)		utine CPROD for Joint One
VECTA2(3)		1*3 Vector Used in Subro-
VECTB2(3)		utine CPROD for Joint Two
VECTA(3)		1*3 Vector Used in Subro-
VECTB(3)	•	utine CPROD
W	W	Frequency of Sine Input
WG1,WG2	wg1,wg2	Weight of Links 1, 2, 3
WG3	wg3	
WG3 W1(3)	wg3 w1(3)	A 1*3 Vector of the
	_	A 1*3 Vector of the Angular Velocity of Link
	_	
	_	Angular Velocity of Link
	_	Angular Velocity of Link 1 in x, y, and z
W1(3)	w1(3)	Angular Velocity of Link 1 in x, y, and z Direction Respectively
W1(3)	w1(3)	Angular Velocity of Link 1 in x, y, and z Direction Respectively Same as W1(3) but for
W1(3) W2(3)	w1(3)	Angular Velocity of Link 1 in x, y, and z Direction Respectively Same as W1(3) but for the Link 2
W1(3) W2(3)	w1(3)	Angular Velocity of Link 1 in x, y, and z Direction Respectively Same as W1(3) but for the Link 2 Same as W1(3) but for
W1(3) W2(3) W3(3)	w1(3) w2(3) w3(3)	Angular Velocity of Link 1 in x, y, and z Direction Respectively Same as W1(3) but for the Link 2 Same as W1(3) but for the Link 3

WDY(3)	wdy(3)	Angular Acceleration of
		Link 1-3 in the Y
		Direction
WDZ(3)	wdz(3)	Angular Acceleration of
		Link 1-3 in the Z
		Direction
WKAREA		Work Area for the LEQT2F
X1,X2,X3		Location of the COG for
		Link 1-3 in the X
		Direction
Y1,Y2,Y3		Location of the COG for
		Link 1-3 in the Y
		Direction
YWXR(1)		Yaw Angle in Radians for
YWXR(2)		Link 1-3 Respectively
YWXR(3)		
YAWANX(1)		Yaw Angle in Degrees for
YAWANX(2)		Link 1-3 Respectively
YAWANX(3)		
Z1,Z2,Z3		Location of the COG for
		Link 1-3 in the Z
		Direction

ACKNOWLEDGEMENTS

I would like to thank all those instructors that have contributed to the culmination of my educational experience at NPS. This thesis is a reflection of both, the knowledge they have imparted to me and the shaping of my intellect. In particular I would like to thank Professor Smith whose patience and help lead directly to the successful completion of my thesis. I would also like to thank Professor McGhee for his valuable ideas and suggestions.

I. INTRODUCTION

The study of robotics is a fairly new discipline. Although the roots of these studies and developments can be traced back to the 1940's, the first commercial computer controlled robot was not introduced until the late 1950's [Ref. 1]. Furthermore, as the theory developed, several common problemmatical methods have been widely accepted and used.

When robot motion is studied, it is usually divided into two parts: robot arm dynamics and robot arm kinematics. While the kinematics problem deals with the geometry of the arm links, the dynamics problem deals with the study of forced motion. The dynamics problem is further divided into two parts: the direct dynamics problem and the inverse dynamics problem. In the inverse dynamics problem, link variables such as acceleration and velocity are known and the forces and necessary joint torques for the desired motion are calculated. In the direct dynamics problem, the joint torques are known and the accelerations and velocities of each joint are calculated.

The kinematics problem is also divided into two parts: the direct kinematics problem and the inverse kinematics problem. The direct kinematics problem is, given a set of critical geometric joint and link variables for each of the

joint-link pairs and the joint angle vector, determine the position and orientation of the end effector of the manipulator. The Denavit-Hartenberg representation, which uses a homogeneous transformation matrix to describe the spatial relationships between two adjacent rigid mechanical links is the most common method used to study the direct kinematics problem [Ref. 2]. The inverse kinematics problem is, given a desired position and orientation of the end effector of the manipulator and a set of critical geometric joint and link parameters, determine the corresponding joint angle vector; i.e., find all of the joint angles of the robot arm so that the end effector can be positioned in the desired location.

A difficulty in the solution to the inverse kinematics problem arises when two successive links align [Ref. 3]. At these times the angle between two successive links becomes 0 or 180 degrees, and the Jacobian matrix which relates the end effector motion to the joint variable variations cannot be inverted. This means that motion cannot be simulated. Different approaches to this problem have been investigated. One method deals with the Newton-Euler approach with a moving coordinate system [Refs. 4, 5], another uses the Langrangian approach [Refs. 6, 7]. One method deals with a virtual work approach [Ref. 8]. Kane's dynamics equations have been used due to computational efficiency [Ref. 9].

However, none of these methods have been able to overcome this singularity problem [Ref. 3].

Several methods have been proposed to avoid the singular configuration. One method proposed to minimize the time near the singular points [Ref. 10], thereby reducing their effects. In another method, it was proposed to avoid these singular points by confining the motion [Ref. 11]. Other solutions deal with presenting equations that can translate the manipulator in the neighborhood of a singularity through identification of singular points beforehand [Refs. 12, 13, 14]. It has also been shown that the redundancy of robot manipulators is effective in dealing with the singularities [Refs. 15, 16, 17].

In this thesis the equations of motion are derived using the principles of Newtonian dynamics in terms of a globally fixed coordinate system to overcome the singularity problem. Each link is treated as a free body with forces and moments applied at the joints and free body analysis is used to derive the equations of motion. Although the equations are relatively long and the solution to the problem is computationally time consuming, it is shown that these equations do overcome the singularity problem. The direct dynamics and the inverse dynamics problem are both simulated.

II. THEORETICAL DEVELOPMENT

A. THEORY OF THE SOLUTION

To derive the non-singular equations of motion the Newton-Euler approach is used (Figure 1). Each link is treated as a free body with forces and moments applied to it, weight has been disregarded. The globally fixed X Y Z coordinate system is used for the equations. All links are assumed to be rigid, so the effects of flexibility are not considered. All of the distances and the directions of the forces and moments have been based on the fixed coordinate system rather than a local coordinate system which moves with the link [Refs. 4, 5]. The link masses, the initial link positions and the orientations are assumed to be known parameters. As a result of equation derivation in the fixed reference frame, the moment of inertia is allowed to change with respect to time and is calculated for each small integration interval. This is opposed to keeping inertia constant as used in the local coordinate formulations. it is assumed that the moment of inertia is constant in each small integration interval. This last assumption effectively linearizes the equations of motion so that a non-singular matrix inversion can be used to solve the equation set.

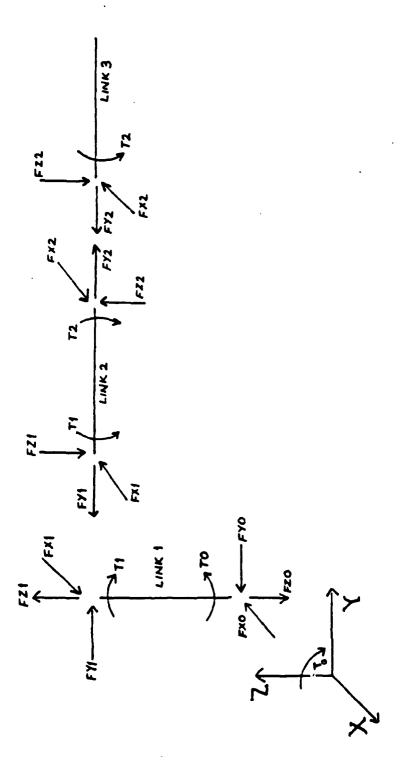


Figure 1. Free Body Diagram of a Three Link Manipulator

To calculate the moment of inertia in each integration interval, the link direction cosine angles with respect to the fixed coordinate system were used. Acceleration of joint zero was input as zero. For each link the three linear acceleration components, three angular acceleration components and forces at each joint were considered to be the unknown variables. Based on the Newtonian dynamics and the manipulator kinematics [Ref. 18], the equations were derived as follows:

B. DYNAMIC EQUATIONS OF MOTION OF LINK ONE

1. Sum of Forces Equations

In the free body analysis of link one (Figure 1) the sum of the forces in the x direction is:

$$\Sigma Fx = Fx1 - Fx0 = M1ax1 \tag{1}$$

Similarly sum of the forces in the y direction is:

$$\Sigma Fy = Fy1 - Fy0 = M1ay1 \tag{2}$$

and the sum of the forces in the z direction is:

$$\Sigma Fz = Fz1 - Fz0 - W1 = M1az1 \tag{3}$$

2. Joint Equations

We begin by evaluating the joint equations at joint zero [Ref. 19, equation (8/4), pp. 423]. If the joint is sequested and analysis conducted at a point on link zero (subscript a) and another at a point on link one (subscript b) that is common to both, so when linked together they are equal. This results in two equations and the two unknowns wdl and wl. As a result:

Aa = Ao

which is the acceleration at joint zero, and

$$Ab = A1 + (wd1 \times rb/G1) + w1 \times (w1 \times rb/G1)$$

which is the acceleration of point b on joint one. Here rb/G1 is the distance from point b to the center of gravity of link one, and A1 is the acceleration at the center of mass of link one or,

After equating Aa and Ab and having the known variables on the right side of the equation and unknown variables on the left side the following sets of equations result:

$$Ax1 + wdy1(rb/G1z) - wdz1(rb/G1y) = Aox - MICO$$
 (4)

where MICO equals

also

$$Ay1 + wdz1(rb/G1x) - wdx1(rb/G1z) = Aoy - MJC0$$
 (5)

where MJCO equals

and

$$Az1 + wdx1(rb/G1y) - wdy1(rb/G1x) = Aoz - MKC0$$

$$MKC0 equals$$
(6)

3. Sum of Moment Equations

Computing the sum of the moment equations about the center of gravity results in:

$$\Sigma M1 = (r0/G1 \times F0) + (r1/G1 \times F1) - T1 + T0$$

where the vector r0/G1 is the distance from joint zero to the center of gravity of link one and vector r1/G1 is the distance from joint one to the center of gravity of link one, in the x, y and z directions. Such that

$$r0/G1 = rj0 - rG1$$

and

$$r1/G1 = rj1 - rG1$$

so

$$rj0 - rG1 = (xj0 - xG1)i + (yj0 - yG1)j + (zj0 - zG1)k$$
 and

rj1 - rG1 = (xj1 - xG1)i + (yj1 - yG1)j + (zj1 - zG1)kIn the x, y and z directions the sum of moment equations are:

$$\Sigma$$
M1 in x direction =

$$(yj0/G1)Fz0 + (zj0/G1)Fy0 + (yj1/G1)Fz1 - (zj1/G1)Fy1$$

- T1x + T0x (7a)

ΣM1 in y direction=

$$(zj0/G1)Fx0 + (xj0/G1)Fz0 + (zj1/G1)Fx1 - (xj1/G1)Fz1$$

-T1y + T0y (8a)

\[\Sigma \text{in z direction=} \]
\[(xj0/G1)Fy0 + (yj0/G1)Fx0 + (xj1/G1)Fy1 - (yj1/G1)Fx1 \]
\[-T1z + T0z \]
\[(9a)

From [Ref.19, equation (57), pp. 227] the sum of the moments about a fixed point that does not move with the body is equal to the time rate of change of angular momentum of the system (H) about the fixed point, $\Sigma M = H$. In the present study we have let each link be a composite body of two elements. The angular momentum (H) for a composite body where the number of elements of the body is two, about the center of gravity of each link is $Hi = \Sigma$ [Ri x (w x Ri)]Mi, where Ri is the distance from the center of gravity of each link to the appropriate element (1 or 2) in the x, y and z direction. So:

$$Hx = \Sigma$$
 $[Ryi(wx(Ryi) - wy(Rxi)) - Rzi(wz(Rxi) - wx(Rzi))]Mi$

If Ixx = Ry² + Rz² dm,
and Ixy = RxRy dm,
and Ixz = RxRz dm,

then:

$$Hx = [I1xx(wx) - I1xy(wy) - I1xz(wz)]M1$$

+ $[I2xx(wx) - I2xy(wy) - I2xz(wz)]M2$

and

$$HDx = [I1xx(wdx) - I1xy(wdy) - I1xz(wdz)]M1$$
$$+ [I2xx(wdx) - I2xy(wdy) - I2xz(wdz)]M2$$
(7b)

by assuming the moment of inertia changes with time but is constant for a given time interval.

By similar analysis it can be shown:

$$Hy = \Sigma \qquad [Rzi(wy(Rzi) - wz(Ryi)) - Rxi(wx(Ryi) - wy(Rxi) - wy(Rxi))]Mi$$

and if $Iyy = Rx^2 + Rz^2 dm$,

and Iyz = RyRz dm,

and Ixy = RxRy dm,

then:

$$HDy = [I1yy(wdy) - I1yz(wdz) - I1yz(wdx)]M1$$
$$+ [I2yy(wdy) - I2yz(wdz) - I2yx(wdx)]M2$$
(8b)

and

$$Hz = \Sigma$$
 [$Rxi(wz(Rxi) - wx(Rzi)) - Ryi(wy(Rzi) - wz(Ryi))]Mi$

if $Izz = Rx^2 + Ry^2 dm$,

So
$$Hz = [I1zz(wz) - I1yz(wy) - I1zx(wx)]M1$$

+ $[I2zz(wz) - I2yz(wy) - I2zx(wx)]M2$

then

$$HDz = [I1zz(wdz) - I1yz(wdy) - I1zx(wdx)]M1$$
$$+ [I2zz(wdz) - I2yz(wdy) - I2zx(wdx)]M2$$
(9b)

Combining equations (7a) and (7b) and keeping known variables on the right side and unknown variables on the left side yields:

$$\Sigma M1x = (-yj0/G1)Fz0 + (zj0/G1)Fy0 + (yj1/G1)Fz1$$

- $(zj1/G1)Fy1 - HDx = T1x - T0x$ (7)

Combining equations (8a) and (8b) yields:

$$\Sigma M1y = (-zj0/G1)Fx0 + (xj0/G1)Fz0 + (zj1/G1)Fx1$$

$$- (xj1/G1)Fz1 - HDy = T1y - T0y$$
 (8)

Combining equations (9a) and (9b) yields:

$$\Sigma M1z = -(xj0/G1)Fy0 + (yj0/G1)Fx0 + (xj1/G1)Fy1$$

$$- (yj1/G1)Fx1 - HDz = T1z - T0z$$
 (9)

C. LINK TWO EQUATIONS

1. Sum of Forces Equations

From the free body diagram (Figure 1) it follows that

$$\Sigma Fx = Fx2 - Fx1 = M2ax2 \tag{10}$$

$$\Sigma Fy = Fy2 - Fy1 = M2ay2 \tag{11}$$

$$\Sigma Fz = Fz2 - Fz1 = M2az2 \tag{12}$$

2. Joint Equations

Analysis is conducted at joint one where similar equations are used as in joint zero with a point on link one

(a) and one on link two (b). For point a the equation is

$$Aa = A1 + wd1 \times ra/G1 + w1 \times (w1 \times ra/G1)$$

ra/G1 is a vector whose distance is measured from point a to the center of gravity of link one in the x, y and z direction.

For point b the equation is:

$$Ab = A2 + wd2 \times rb/G2 + w2 \times (w2 \times rb/G2)$$

where rb/G2 is a vector whose distance is measured from point b to the center of gravity of link two.

Equating Aa and Ab and setting knowns and unknowns on the respective sides of the equation results in:

+
$$wdx1(ra/G1z) = MJC1 - MJC2$$
 (14)

$$MJC1 = wz1wy1(ra/G1z) - (wz1)2(ra/G1y) - (wx1)2(ra/G1y)$$

+ wx1wy1(ra/G1x)

$$MJC2 = wz2wy2(rb/G2z) - (wz2)2(rb/G2y) - (wx2)2(rb/G2y) + wx2wy2(rb/G2x)$$

$$AZ2 - AZ1 + wdx2(rb/G2y) - wdy2(rb/G2x) - wdx1(ra/G1y)$$

$$+ wdy1(ra/G1x) = MKC1 - MKC2$$
(15)

$$MKC1 = wx1wz1(ra/G1x) - (wx1)2(ra/G1z) - (wy1)2(ra/G1z)$$

$$+ wy1wz1(ra/G1y)$$

$$MKC2 = wx2wz2(rb/G2x) - (wx2)2(rb/G2z) - (wy2)2(rb/G2z)$$
$$+ wy2wz2(rb/G2y)$$

3. Sum of the Moment Equations

These equations have a similar development as that of link one:

$$\Sigma M2 = (rj1/G2) \times F1 + (rj2/G2) \times F2 + T1 - T2$$

where

$$rj1/G2 = (xj1 - xG2)i + (yj1 - yG2)j + (zj1 - zG2)k$$

$$rj2/G2 = (xj2 - xG2)i + (yj2 - yG2)j + (zj2 - zG2)k$$

$$\Sigma M2x = - (yj1 - yG2)Fz1 + (zj1 - zG2)Fy1$$

$$+ (yj2 - yG2)Fz2 - (zj2 - zG2)Fy2$$

$$+ T1x - T2x$$
(16a)

$$\Sigma M2y = - (zj1 - zG2)Fx1 + (xj1 - xG2)Fz1$$

$$+ (zj2 - zG2)Fx2 - (xj2 - xG2)Fz2$$

$$+ T1y - T2y$$
(17a)

$$\Sigma M2z = - (xj1 - xG2)Fy1 + (yj1 - yG2)Fx1$$

+ $(xj2 - xG2)Fy2 - (yj2 - yG2)Fx2$
+ $T1z - T2z$ (18a)

From angular momentum equation developed for link one, it can be shown for link two:

$$\Sigma M2x = HDx \tag{16b}$$

$$\Sigma M2y = HDy \tag{17b}$$

$$\Sigma M2z = HDz \tag{18b}$$

Combining equations (16a) and (16b) the following result:

$$- (yj1 - yG2)Fz1 + (zj1 - zG2)Fy1 + (yj2 - yG2)Fz2$$

$$- (zj2 - zG2)Fy2 - HDx = - T1x + T2x$$
 (16)

Combining equations (17a) and (17b) yield the following result:

$$- (zj1 - zG2)Fx1 + (xj1 - xG2)Fz1 + (zj2 - zG2)Fx2$$
$$- (xj2 - xG2)Fz2 - HDy = -T1y + T2y$$
(17)

Combining equations (18a) and (18b) yield the following result:

$$-(xj1 - xG2)Fy1 + (yj1 - yG2)Fx1 + (xj2 - xG2)Fy2$$

$$- (yj2 - yG2)Fx2 - HDz = -T1z + T2z$$
 (18)

D. LINK THREE EQUATIONS

1. Sum of Forces Equations

Following similar logic from that previously developed:

$$\Sigma Fx = -Fx2 = M3ax3 \tag{19}$$

$$\Sigma Fy = - Fy2 = M3ay3 \tag{20}$$

$$\Sigma Fz = -Fz2 - W3 = M3az3 \tag{21}$$

2. Joint Equations

With point a on link two and point b on link three one gets for joint equations at joint two:

$$Aa = A2 + (wd2 \times ra/G2) + w2 \times (w2 \times ra/G2)$$

where ra/G2 is a vector whose distance is measured from point a to center of gravity of link two in the x, y and z direction.

For point b

$$Ab = A3 + wd3 \times rb/G3 + w3 \times (w3 \times rb/G3)$$

where rb/G3 is a vector whose distance is measured from point b to center of gravity of link three in the x, y and z direction.

Equating Aa and Ab and setting knowns and unknowns on the respective sides of the equation results in:

$$Ax3 - Ax2 + wdy3(rb/G3z) - wdz3(rb/G3y) - wdy2(ra/G2z)$$

+ wdz2(ra/G2y) = MIC3 - MIC4 (22)

MIC3 =
$$wy2wx2(ra/G2y) - (wy2)2(ra/G2x) - (wz2)2(ra/G2x)$$

+ $wz2wx2(ra/G2z)$

$$MIC4 = wy3wx3(rb/G3y) - (wy3)2(rb/G3x) - (wz3)2(rb/G3x + wz3wx3(rb/G3z)$$

$$Ay3 - Ay2 + wdz3(rb/G3x) - wdx3(rb/G3z) - wdz2(ra/G2x)$$

+ $wdx2(ra/G2z) = MJC3 - MJC4$ (23)

$$MJC3 = wz2wy2(ra/G2z) - (wz2)2(ra/G2y) - (wx2)2(ra/G2y) + wx2wy2(ra/G2x)$$

$$AZ3 - AZ2 + wdx3(rb/G3y) - wdy3(rb/G3x) - wdx2(ra/G2y)$$

+ $wdy2(ra/G2x) = MKC3 - MKC4$ (24)

$$MKC3 = wx2wz2(ra/G2x) - (wx2)2(ra/G2z) - (wy2)2(ra/G2z) + wx2wy2(ra/G2y)$$

$$MKC4 = wx3wz3(rb/G3x) - (wx3)2(rb/G3z) - (wy3)2(rb/G3z) + wy3wz3(rb/G3y)$$

3. Sum of Moment Equations

As in the development of the equations for link one:

$$\Sigma M3 = (rj2/G3) \times F2 + T2$$

where

$$rj2/G3 = (xj2 - xG3)i + (yj2 - yG3)j + (zj2 - zG3)k$$

= $xj2/G3 + yj2/G3 + zj2/G3$

$$\Sigma M3x = (-yj2/G3)Fz2 + (zj2/G3)Fy2 + T2x$$
 (25a)

$$\Sigma M3y = (-zj2/G3)Fx2 + (xj2/G3)Fz2 + T2y$$
 (26a)

$$\Sigma M3z = (-xj2/G3)Fy2 + (yj2/G3)Fx2 + T2z$$
 (27a)

From the angular momentum theory:

$$\Sigma M3x = HDx \tag{25b}$$

$$\Sigma M3y = HDy \tag{26b}$$

$$\Sigma M3z = HDz \qquad (27b)$$

Combining equations (25a) and (25b) the following results:

$$(-yj2/G3)Fz2 + (zj2/G3)Fy2 - HDx = - T2x$$
 (25)

Combining equations (26a) and (26b) the following results:

$$(-zj2/G3)Fx2 + (xj2/G3)Fz2 - HDy = - T2y$$
 (26)

Combining equations (27a) and (27b) the following results:

$$(-xj2/G3)Fy2 + (yj2/G3)Fx2 - HDz = - T2z$$
 (27)

III. COMPUTATIONAL APPROACH

A. PROGRAM MATRICIES

The Dynamic Simulation Language (DSL) was used to simulate the motion. This computer code was compiled on an IBM 3033 computer by using the FORTVS compiler and all of the calculations have been done in double precision. The entire simulation process is shown in Figure 2 and is discussed below.

The principle program matrix, Matrix A (MATA, 27*27), was created from the coefficients of the unknown variables in equations 1 to 27. In the simulation of the direct dynamics problem, a corresponding 27*1 Matrix B (MatB) was generated from all known variables, also from equations 1 to 27. A subroutine CPROD was used to perform all the cross product terms required in the main program. The resulting equations are shown in Figure 3, in the final matrix form. During a simulation time step, the link inertias, the link velocities and the link positions were all assumed constant. IMSL subroutine LEQT2F was called to invert the matrix A and get the generalized solution x from Ax = B. This subroutine uses Gaussian elimination with iterative improvement to get a high accuracy solution to the problem. The output from LEQT2F then returns as MATB, which contains the solution to the equations. The outputs were used by DSL to integrate

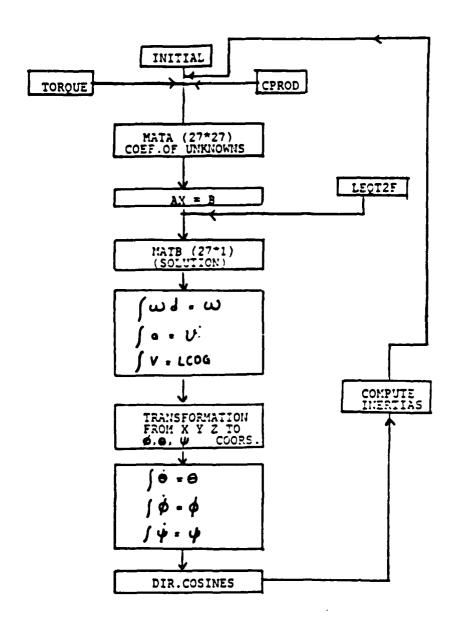


Figure 2. Computer Simulation Flow Chart

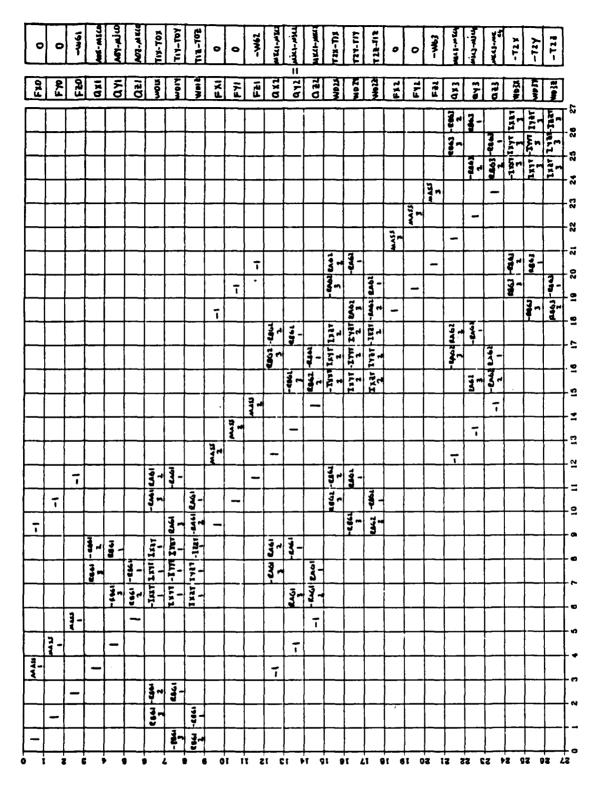


Figure 3. Matrix Entries

the linear and angular accelerations of each link to get the linear and angular velocities respectively. The linear velocities for each link were next integrated to get the linear displacements of center of gravity of each link. Although the linear velocities in the fixed reference frame can be integrated to get the linear displacements, this idea is not true for the angular displacements [Refs. 20, 21].

angular displacements, a get the transformation matrices must be used on the velocities, then That is, the angular the motion can be integrated. velocities of each link in the fixed reference system must first be converted into e illavences in a body fixed coordinate system then into body Euler rates and Euler angles to define the motion unambigously. In this thesis, the body coordinate velocities are called Brate1, Brate2 and Brate3 for the link one, link two and link three respectively. To convert these velocities into the Euler rates, another transformation matrix is used. That is, the transformation matrix is multiplied by body rates to get the Euler angle rates for each link. These later rates are defined as the Yaw rate (about the x axis), the Pitch rate (about the y axis) and the Roll rate (about z axis). These rates are called as Rate1, Rate2 and Rote3 for link one, link two and link three. After the transformation of velocities to the Euler rates, they can be directly integrated to get the Euler angles. In this thesis, these

angles are called the Yaw, pitch and Roll angles about th. x y z axis respectively [Refs. 2, 20].

This convention is very important and should not be mixed with another set of Euler angles described differently in the literature [Refs. 3, 20]. In addition to that, the order of the rotation must be decided beforehand. This is true because the orientation of objects is different when they are rotated in a different order, i.e., first the rotation about x axis, then a rotation about the y axis, finally a rotation about the z axis will produce a different orientation in space than the one which was defined and used in this thesis (z, y, then x). The transformation matrices used here are valid as long as the assumed order of the rotation is retained.

In the literature, a quite different set of angles is used to describe the orientation [Refs. 2, 3]. While some of these angles define the orientation with respect to a non-orthogonal coordinate system some others may define with respect to an orthogonal system. Euler angles define an independent set of coordinates system which are not orthogonal. Therefore, all three coordinates are independent from each other and velocities in this coordinate system can be directly integrated to get the relevant angles. They describe the unique orientation of the body in space. The orthogonal set of coordinate axes do not form an independent coordinate system. This is true since the three axis have a certain relation with each other in any position, i.e., direction cosine angles have a unique relation in a fixed reference system and cannot be obtained by integrating any velocity in an orthogonal coordinate system. The velocities in an orthogonal coordinate system must thus be converted to a nonorthogonal coordinate system (e.g. Euler angle rates) prior to integration.

After Yaw, Pitch and Roll angles are calculated, it is possible to go back and express the orientation of the body with the direction cosines in an orthogonal coordinate system. The columns of the transformation matrix from one orthogonal set of axes to another describes the orientation of the new coordinate axis with respect to old coordinate system. So, a transformation matrix can be used to get the direction cosine angles. The direction cosines of each link are then used to calculate the moment of inertia of the links. The variation of a link inertia with respect to time was shown in Figure 4 as it was calculated during a simulation run. The derivation of the transformation matrices is shown in Appendix A.

B. CONSTRAINTS IN THE SIMULATION PROGRAM

In the development of the equations, thus far, each link has been treated such that it can move in space without any constraint. For most cases, however, degrees of freedom

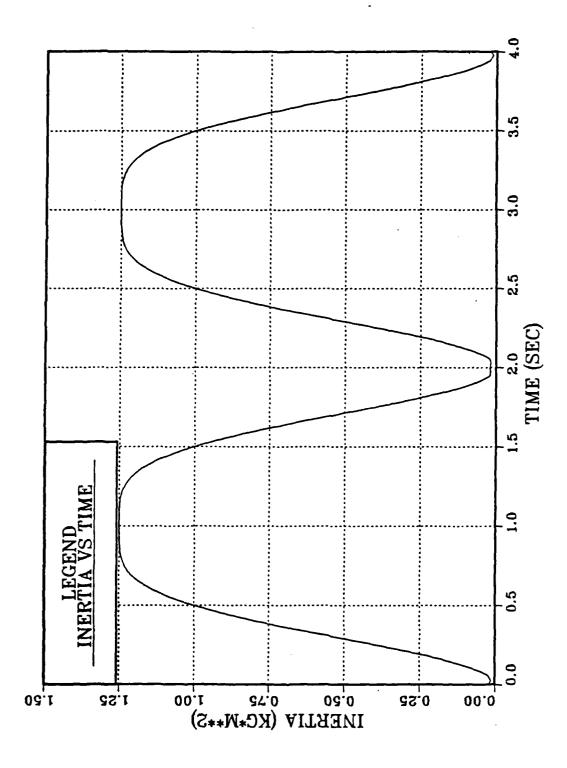


Figure 4. Moment of Inertia

of each link must be reduced so that the link can move only in the direction permitted by its joint.

In the simulation of the direct dynamics problem, the base rotation is transmitted to the second and third links for the three revolute joint arm which was studied. This was simulated by allowing the first link to rotate only about Z axis. At the same time, the rotational rates of the second and third links about the Z axis were made equal.

To make any of the simulation variables zero, meaning no variation in that direction, one zeroes the related rows and columns in MatA putting 1 on the diagonal. At the same time, if the same row in MatB is made zero, the corresponding mathematical expression for this equation will be in the form of 1 * X = 0, and a result of this, X will be equal zero. This idea can also be applied to MatA and MatB to make two variables equal so that X1 - X2 = 0. Thus, the above motion was simulated by constraint.

C. PROGRAM VALIDATION

The validation of the inverse dynamics problem has been conducted in several cases. In this approach the idea was to choose an angular acceleration such that at a certain time, two of the three links would align. In other words, the links would be in a singular position at this time, and if the simulation procedure worked, the singularity problem would have been avoided.

The validation procedure is shown in Figure 5. For this procedure link two angle was chosen as $\theta = (Pi/2) *$ $\sin(pi/2) *$ Time. This time dependent function has a period of 4 sec and an amplitude of 90 degrees. The second derivative of this function is $\theta = -((pi**3)/8) * \sin(pi/2)$ * Time and corresponds to the angular acceleration of the link. This value was input as the theoretical angular acceleration in the simulation program, and corresponding linear accelerations and forces at each joint were calculated. The other two links were forced to have zero rotational velocity throughout the simulation.

To apply a corresponding torque at the joint, MaTA and MatB were multiplied and a right hand side matrix DQ (27*1) was obtained (MATA * MATB = DQ). This matrix DQ (27*1) was used to solve the simulation equations in the form of AX = DQ. The vector X (that is, theta) was fedback in the loop and the theoretical and the calculated values of theta were compared.

The above discussion has been implemented in three different initials configuration as shown in Figure 6. To force the arm links to the various singular points, several different plane motions were simulated. For each configuration, three different angular motions were input for link 2, or as can be seen from Figure 6, for each configuration, one angular velocity caused a spinning motion of the link about the axis with which it was initially

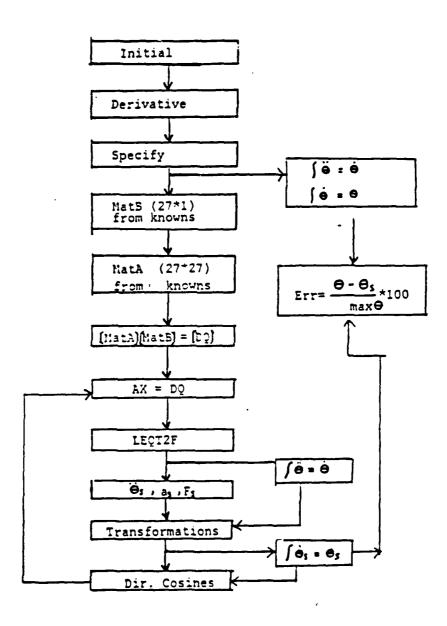


Figure 5. Validation Procedure Flow Chart

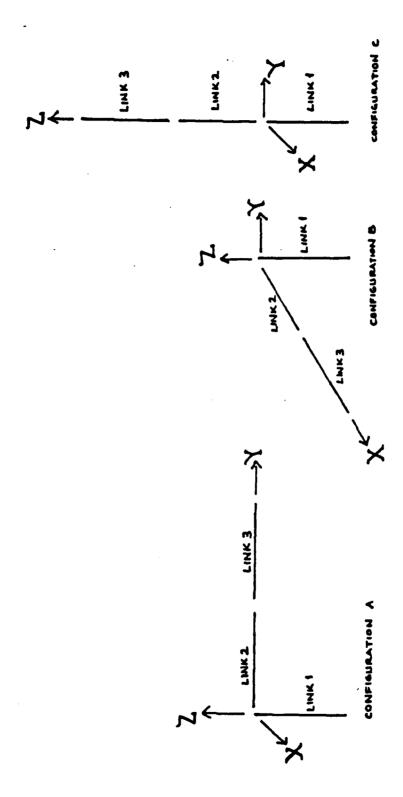


Figure 6. Initial Orientation of Links for Validation

aligned, while the other two produced a plane motion according to direction of the applied angular motion. angles between two successive links were measured for each motion. Figure 7 shows the angle variation between link 1 and link 2, and link 2 and link 3 corresponding to an angular acceleration applied in the X direction for configuration A. As can be seen from Figures 7 and 8, two successive links pass through the singular points every 2 seconds, i.e., they align and the angle between links becomes either 0 or 180 degrees. (The singular points are marked on the graph). Figure 8 shows the angle variations for an angular motion applied in the Z direction for configuration A. In this case, it is obvious that the angle between link 1 and link 2 is always constant (90 degrees). The second graph on Figure 8 shows the angle between link 2 and link 3 now, singularity occurs on the Z motion, with the singularities marked as in Figure 8. Figure 7 and Figure 8 are representative of the data obtained in the validation procedure which analyzed nine possible motions of link 2 leading the singularity. This data showed that singularity in these directions could be overcome, and a solution to the problem exists using this approach.

For each run, the error between the theoretical and the simulated value of Theta was computed. Figure 9 shows the percent error for the X motion for configuration A (Figure 7 Data). The trend of the error is representative of every

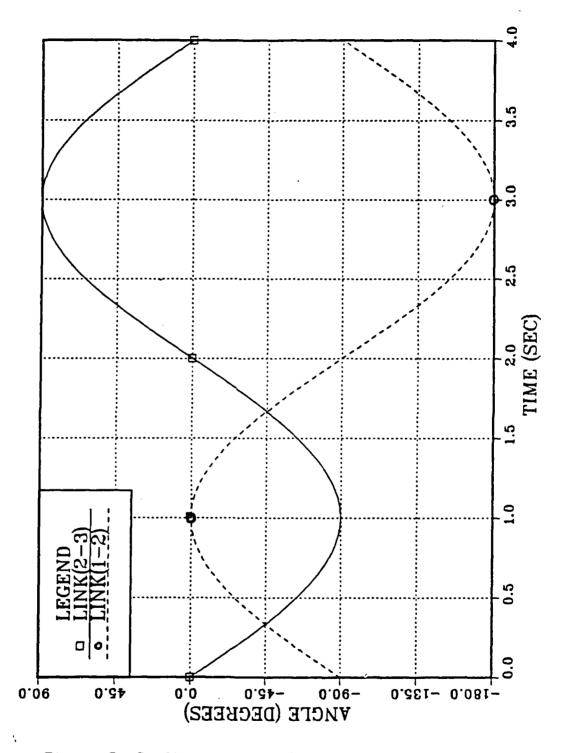


Figure 7. Configuration A, Link 2 W_x Motion

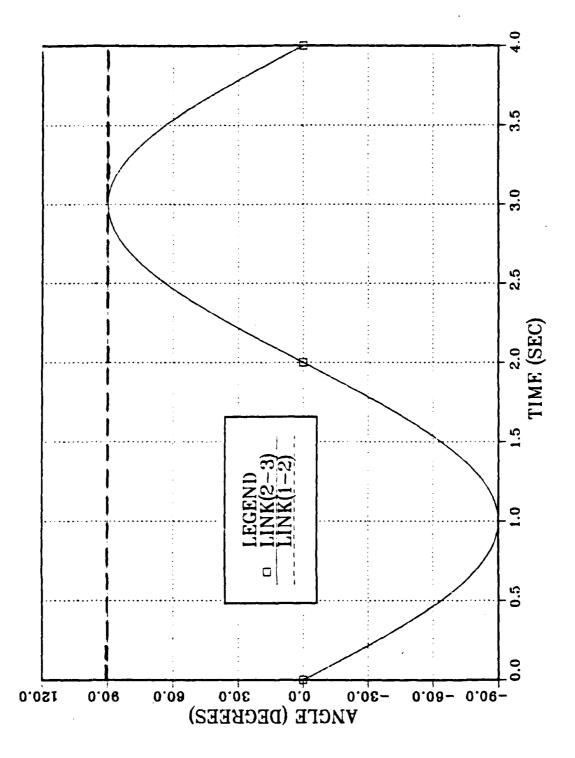


Figure 8. Configuration A, Link 2 Wz Motion

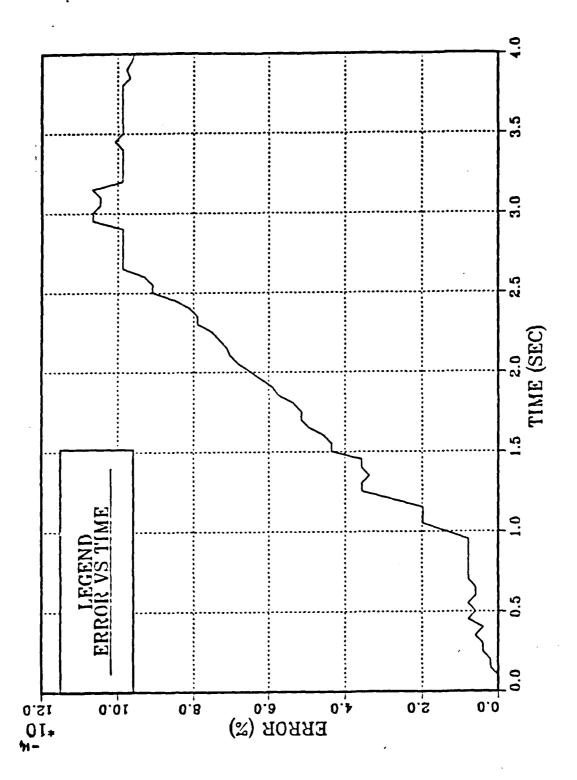


Figure 9. Percent Error Between Theoretical and Simulated Angles

case investigated. The figure shows that, due to nature of the numerical integration, the error slightly accumulates during the simulation, but still has very small value. This proves that the direct dynamics problem can be solved very accurately by Newton-Euler approach in a fixed coordinate system.

IV. RESULTS AND RECOMMENDATIONS

- A dynamic model of a three link, rigid revolute joint manipulator has been developed in this thesis, as a general computer program package.
- 2. Several runs for different initial configurations were simulated and the singularity problem was investigated. Theoretical and calculated values of angular positions were compared. It was proved that the singularity problem could be overcome by using a Newton-Euler approach in a fixed coordinate system.
- 3. The following recommendations are provided:
 - a. Enhance the code and make it more interactive.

 That is, let the user specify the constraints he wants to apply on each link by answering interactive questions before the actual simulation run starts. Thus, the motion can be simulated with different constraints without going into the code and changing the relevant parameters.
 - b. Adapt the code for use in a microcomputer. Add a subroutine in the program to invert the matrix A. Thus, the code will be more independent from outside routines and more adaptable to other computer systems.

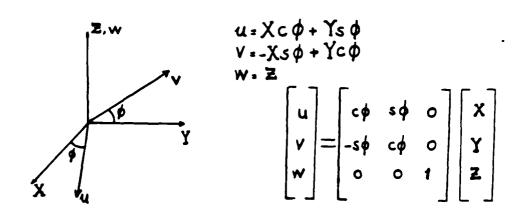
- c. Validation of the approach via actual experimental tests in crucial. This will establish a way of developing accurate constants for subsequent controller design and provide a basis for compensation of gravity effects. Determining these constants for the code will make the simulation program more concrete and will provide more physical insight.
- d. Finally, develop a controller for a manipulator which makes use of the present algorithm for validation and design.

APPENDIX A

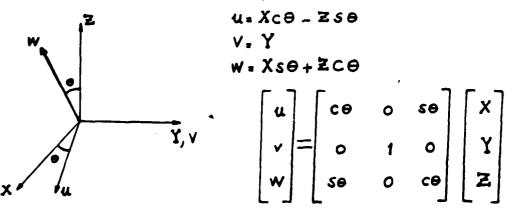
DERIVATION OF THE TRANSFORMATION MATRIX FROM

EARTH FIXED COORDINATE SYSTEM TO BODY FIXED COORDINATE SYSTEM

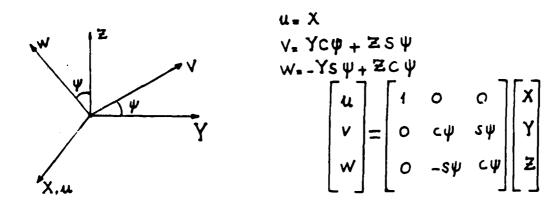
The angular velocity terms obtained by integration of the angular acceleration terms are with respect to an Earth fixed coordinate system. To define the Euler angles which are called Yaw Pitch and Roll angles in this thesis, we have to establish an appropriate body fixed coordinate system. Thus, U, V and W is a right hand coordinate system [Ref. 20] with its origin fixed at the center of gravity of a link. The U, V, W coordinate system is initially oriented such that the angles between two coordinate system axes are simultaneously reduced to zero, i.e., i, j, k, axis are parellel to the I, J, K respectively.


If a rotation from X Y Z coordinate system to the U V W coordinate system is accomplished by first rotation about K axis (roll), then about J axis (pitch) and finally about I axis (yaw), it follows that for any arbitrary point in the X Y Z coordinate system, the corresponding coordinates in the U V W system are;

$$\begin{bmatrix} \mathbf{U} \\ \mathbf{V} \\ \mathbf{W} \end{bmatrix} = \begin{bmatrix} \mathbf{MatR} \\ \mathbf{Z} \end{bmatrix}$$

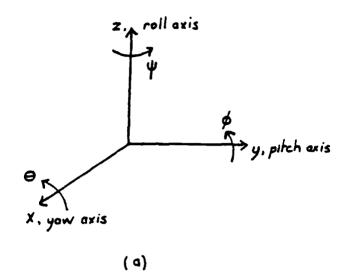

where MatR is a 3*3 matrix.

To get the transformation matrix, we need to examine each rotation separately.


Rotation about the Z axis;

Rotation about the Y axis;

Rotation about the X axis;



By multiplying three rotation matrix together;

where C = COS S = Sin T = Tan

The transformation matrix from body fixed to Euler coordinate system is obtained as below [Ref. 20].

The angles discussed above are shown in Figure 10.

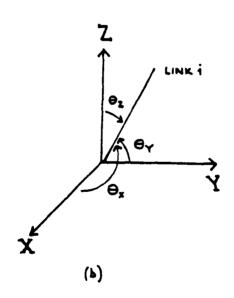


Figure 10. Critical Angles

- (a) Euler Angles, Body Coordinates
- (b) Direction Cosines, Global Coordinates

APPENDIX B

THREE DIMENSIONAL DIRECT DYNAMICS SIMULATION PROGRAM

```
TERMINAL
INITIAL
         INPUT PARAMETER CONSTANTS
               A = 5.000
              P = 0.0D0
W = 2.0D0 * PI
IDGT = 3
               G=0.000
               N = 27
              M=\bar{1}
               IA = 27
         INPUT JOINT LOCATIONS IN METERS
               JX0 = 0.0D0
               JYO = 0.0DO
               JZO = 0.0DO \\ JX1 = 0.0DO
               JY1 = 0.000
               JZ1 = 1.0D0
JX2 = 0.0D0
               JY2 = 1.0D0
JZ2 = 1.0D0
         INPUT TORQUE CONSTANTS
              TOX = 0.0D0
TOY = 0.0D0
TOZ = 0.0D0
T1Y = 0.0D0
T1Z = 0.0D0
T2Y = 0.0D0
               T2Z = 0.0D0
         INPUT DISTANCE FROM CENTER OF LINK TO CENTER OF MASS
```

```
FOR EACH LINK ENDS
                           L(1,1) = 0.50D0

L(1,2) = 0.50D0

L(2,1) = 0.50D0

L(2,2) = 0.50D0

L(3,1) = 0.50D0

L(3,2) = 0.50D0
               INPUT MASS AT LINK ENDS IN KILOGRAMS
                           MASS(1,1) = 2.5D0

MASS(1,2) = 2.5D0

MASS(2,1) = 2.5D0

MASS(2,2) = 2.5D0

MASS(3,1) = 2.5D0

MASS(3,2) = 2.5D0
               INPUT OMEGA AND OMEGA DOT, YAW, PITCH, AND ROLL ANGLES
                            DO 30 I = 1,3
                                     W1(I)
W2(I)
W3(I)
WDX(I)
WDY(I)
                                                               = 0.000
                                                               = 0.000
                                                               = 0.000
                                                              = 0.000
= 0.000
                                                              = 0.000
                                     WDZ(I)
                                    YAWANX(I) = 0.0D0

PTCANY(I) = 0.0D0

ROLANZ(I) = 0.0D0
30
                       CONTINUE
                              YWRX1 = YAWANX(1) * DEGRA
PTRY1 = PTCANY(1) * DEGRA
RLRZ1 = ROLANZ(1) * DEGRA
YWRX2 = YAWANX(2) * DEGRA
PTRY2 = PTCANY(2) * DEGRA
RLRZ2 = ROLANZ(2) * DEGRA
YWRX3 = YAWANX(3) * DEGRA
PTRY3 = PTCANY(3) * DEGRA
RLRZ3 = ROLANZ(3) * DEGRA
              INPUT LOCATION OF LINK CENTERS OF GRAVITY
                             LOCATION OF LINK

LCOGX(1) = 0.0D0

X1 = LCOGX(1)

LCOGY(1) = 0.0D0

Y1 = LCOGY(1)

LCOGZ(1) = 0.5D0

Z1 = LCOGZ(1)

LCOGX(2) = 0.0D0

X2 = LCOGX(2)

LCOGY(2) = 0.5D0

Y2 = LCOGY(2)

LCOGZ(2) = 1.0D0

Z2 = LCOGZ(2)

LCOGZ(3) = 0.0D0

LCOGX(3) = 0.0D0
                              LCOGX(3) = 0.0D0

X3 = LCOGX(3)

LCOGY(3) = 1.5D0

Y3 = LCOGY(3)
                              LCOGZ(3) = 1.0D0
Z3 = LCOGZ(3)
               INPUT MASS OF EACH LINK IN KG AND COMPUTE WEIGHTS IN NEWTONS
                               MASS1 = 5.000
                              MASS2 = 5.0D0
MASS3 = 5.0D0
                               WG1 = MASS1*G
                               WG2 = MASS2*G
                               WG3 = MASS3*G
```

INPUT ACCELERATION OF JOINT ZERO

```
AOX = 0.0D0
                      AOY = 0.0D0
                      \tilde{A}\tilde{O}\tilde{Z} = \tilde{O}.\tilde{O}\tilde{D}\tilde{O}
            INITIALIZE MATRIX A AND B TO ZERO
                      DO 40 I = 1,27

DO 50 J = 1,27

MATA(I,J) = 0.0D0
   50
40
                      CONTINUE
                   CONTINUE
                      DO 60 I = 1,27
MATB(I) = 0.0D0
  60
                   CONTINUE
            INITIALIZE THE TRANSFORMATION MATRICIES AND VELOCITIES
                      DO 63 I = 1,3
DO 64 J = 1,3
                             RATE1(I)
RATE2(I)
RATE3(I)
BRATE1(I)
BRATE2(I)
BRATE3(I)
                                                      0.0D0
                                                      0.0D0
                                                 =
                                                      0.0D0
                                                 =
                                                      0.0D0
                                                 =
                                                      0.0D0
                                                 =
                                                      0.0D0
                             MAT1T (I,J) = MAT2T (I,J) = MAT3T (I,J) = MAT1R (I,J) = MAT2R (I,J) = MAT3R (I,J) =
                                                      0.0D0
                                                      0.0D0
                                                      0.0D0
                                                      0.0D0
                                                      0.0D0
                                                      0.000
 64
63
                      CONTINUE
                CONTINUE
DERIVATIVE
NOSORT
             CALL ERRSET (208,256,-1,1,1)
             LEVELQ = 0
CALL UERSET(LEVELQ, LEVLDQ)
           INITIALIZE MATRIX A AND B TO ZERO
                    DO 70 I = 1,27

DO 80 J = 1,27

MATA(I,J) = 0.0D0
 80
70
                     CONTINUE
                 CONTINUE
                     DO 90 I = 1,27
MATB(I) = 0.0D0
 90
                 CONTINUE
          INPUT JOINT EQUATIONS
          JOINT ZERO EQUATIONS
          AB = AG1 + (WD1 \times RB/G1) + W1 \times (W1 \times RB/G1)
                          VECTAO(1) = WDX(1)
VECTAO(2) = WDY(1)
VECTAO(3) = WDZ(1)
                          RBG1(1) = JX0 - LCOGX(1)
RBG1(2) = JY0 - LCOGY(1)
RBG1(3) = JZ0 - LCOGZ(1)
                    CALL CPROD(VECTAO, RBG1, MIAO, MJAO, MKAO)
                          VECTAO(1) = W1(1)
VECTAO(2) = W1(2)
VECTAO(3) = W1(3)
                    CALL CPROD(VECTAO, RBG1, MIBO, MJBO, MKBO)
```

```
VECTB0(1) = MIB0
VECTB0(2) = MJB0
VECTB0(3) = MKB0
          CALL CPROD(VECTAO, VECTBO, MICO, MJCO, MKCO)
JOINT ONE EQUATIONS ---
AA = AG1 + (WD1 X RA/G1) + W1 X (W1 X RA/G1)
                VECTA1(1) = WDX(1)
VECTA1(2) = WDY(1)
VECTA1(3) = WDZ(1)
                RAG1(1) = JX1 - LCOGX(1)
RAG1(2) = JY1 - LCOGY(1)
RAG1(3) = JZ1 - LCOGZ(1)
          CALL CPROD(VECTA1, RAG1, MIA1, MJA1, MKA1)
                VECTA1(1) = W1(1)
VECTA1(2) = W1(2)
VECTA1(3) = W1(3)
           CALL CPROD (VECTA1, RAG1, MIB1, MJB1, MKB1)
                VECTB1(1) = MIB1
VECTB1(2) = MJB1
VECTB1(3) = MKB1
           CALL CPROD (VECTA1, VECTB1, MIC1, MJC1, MKC1)
AB = AG2 + (WD2 \times RB/G2) + W2 \times (W2 \times RB/G2)
                 VECTA1(1) = WDX(2)
VECTA1(2) = WDY(2)
VECTA1(3) = WDZ(2)
                 RBG2(1) = JX1 - LCOGX(2)
RBG2(2) = JY1 - LCOGY(2)
RBG2(3) = JZ1 - LCOGZ(2)
             CALL CPROD (VECTA1, RBG2, MIA2, MJA2, MKA2)
                 VECTA1(1) = W2(1)
VECTA1(2) = W2(2)
VECTA1(3) = W2(3)
             CALL CPROD (VECTA1, RBG2, MIB2, MJB2, MKB2)
                 VECTB1(1) = MIB2
VECTB1(2) = MJB2
VECTB1(3) = MKB2
              CALL CPROD (VECTA1, VECTB1, MIC2, MJC2, MKC2)
 JOINT TWO EQUATIONS
 AA = AG2 + (WD2 \times RA/G2) + W2 \times (W2 \times RA/G2)
                 VECTA2(1) = WDX(2)
VECTA2(2) = WDY(2)
VECTA2(3) = WDZ(2)
                 RAG2(1) = JX2 - LCOGX(2)
RAG2(2) = JY2 - LCOGY(2)
RAG2(3) = JZ2 - LCOGZ(2)
              CALL CPROD (VECTA2, RAG2, MIA3, MJA3, MKA3)
                  VECTA2(1) = W2(1)
VECTA2(2) = W2(2)
VECTA2(3) = W2(3)
              CALL CPROD (VECTA2, RAG2, MIB3, MJB3, MKB3)
                  VECTB2(1) = MIB3
VECTB2(2) = MJB3
VECTB2(3) = MKB3
              CALL CPROD(VECTA2, VECTB2, MIC3, MJC3, MKC3)
 AB = AG3 + (WD3 \times RB/G3) + W3 \times (W3 \times RB/G3)
```

```
VECTA2(1) = WDX(3)
VECTA2(2) = WDY(3)
VECTA2(3) = WDZ(3)
                        RBG3(1) = JX2 - LCOGX(3)
RBG3(2) = JY2 - LCOGY(3)
RBG3(3) = JZ2 - LCOGZ(3)
                   CALL CPROD (VECTA2, RBG3, MIA4, MKA4, MKA4)
                        VECTA2(1) = W3(1)
VECTA2(2) = W3(2)
VECTA2(3) = W3(3)
                   CALL CPROD (VECTA2, RBG3, MIB4, MJB4, MKB4)
                        VECTB2(1) = MIB4
VECTB2(2) = MJB4
VECTB2(3) = MKB4
                   CALL CPROD (VECTA2, VECTB2, MIC4, MJC4, MKC4)
 SUM OF MOMENTS EQUATIONS
     DO 100 I = 1.3
COMPUTE HX,H DOT X,HY,H DOT Y, HZ,H DOT Z
                         RX(I,1) = -L(I,1) * DCOS(DRCRAX(I))

RX(I,2) = L(I,2) * DCOS(DRCRAX(I))

RY(I,1) = -L(I,1) * DCOS(DRCRAY(I))

RY(I,2) = L(I,2) * DCOS(DRCRAY(I))

RZ(I,1) = -L(I,1) * DCOS(DRCRAZ(I))

RZ(I,2) = L(I,2) * DCOS(DRCRAZ(I))
  ELSE
   \tilde{I}XXT(I) = IXXT(I)
   END IF
  \begin{array}{lll} & \text{IXY}(\text{I},1) & = & \text{MASS}(\text{I},1) & * & \text{RX}(\text{I},1) & * & \text{RY}(\text{I},1) \\ & \text{IXY}(\text{I},2) & = & \text{MASS}(\text{I},2) & * & \text{RX}(\text{I},2) & * & \text{RY}(\text{I},2) \\ & \text{IXYT}(\text{I}) & = & \text{IXY}(\text{I},1) & + & \text{IXY}(\text{I},2) \end{array}
  \begin{array}{lll} \text{IXZ}(\texttt{I},\texttt{1}) &=& \text{MASS}(\texttt{I},\texttt{1}) & & \text{RZ}(\texttt{I},\texttt{1}) \\ \text{IXZ}(\texttt{I},\texttt{2}) &=& \text{MASS}(\texttt{I},\texttt{2}) & & \text{RZ}(\texttt{I},\texttt{2}) \\ \text{IXZT}(\texttt{I}) &=& \text{IXZ}(\texttt{I},\texttt{1}) & +& \text{IXZ}(\texttt{I},\texttt{2}) \end{array}
                                                                            * RX(I,1)
* RX(I,2)
  IYY(I,1) = MASS(I,1) * ({RX(I,1) * RX(I,1)} + (RZ(I,1) * RZ(I,1))}
IYY(I,2) = MASS(I,2) * ({RX(I,2) * RX(I,2)} + (RZ(I,2) * RZ(I,2))}
IYYT(I) = IYY(I,1) + IYY(I,2)
IF (IYYT(I) .LE. .020) THEN
IYYT(I) = .020
   ELSE
IYYT(I)
END IF
                     = IYYT(I)
   \begin{array}{lll} {\rm IYZ}({\rm I},1) &=& {\rm MASS}({\rm I},1) & * & {\rm RY}({\rm I},1) \\ {\rm IYZ}({\rm I},2) &=& {\rm MASS}({\rm I},2) & * & {\rm RY}({\rm I},2) \\ {\rm IYZT}({\rm I}) &=& {\rm IYZ}({\rm I},1) & + & {\rm IYZ}({\rm I},2) \end{array}
                                                                             * RZ(I,1)
* RZ(I,2)
```

```
IZZT(I) = .020
         ELSE
         IZZT(I)
END IF
                       = IZZT(I)
         \begin{array}{lll} \text{SUMHDX}(I) &=& \text{HDX}(1) &+& \text{HDX}(2) \\ \text{SUMHDY}(I) &=& \text{HDY}(1) &+& \text{HDY}(2) \\ \text{SUMHDZ}(I) &=& \text{HDZ}(1) &+& \text{HDZ}(2) \end{array}
100
            CONTINUE
         ENTER CONSTANTS INTO MATRIX A
         LINK ONE
         SUM OF FORCES IN THE X DIRECTION
               MATA(1,1)
                                = 1.000
               MATA(1,4) = MASS1
MATA(1,10) = -1.0D0
MATB(1) = 0.0D0
         SUM OF FORCES IN Y DIRECTION
               MATA(2,2) = 1.0D0
MATA(2,5) = MASS1
MATA(2,11) = -1.0D0
               MATB(2)
                             = 0.000
         SUM OF FORCES IN Z DIRECTION
               MATA(3,3) = 1.0D0

MATA(3,6) = MASS1
               MATA(3,6) = MASS1
MATA(3,12) = -1.0D0
         SUM OF FORCES LINK ONE EQUAL
               MATB(3)
                              = -WG1
         EQUATIONS AT JOINT ZERO
         IN THE X DIRECTION
               MATA(4,4) = 1.0D0
MATA(4,8) = RBG1(3)
MATA(4,9) = -RBG1(2)
               MATB(4) = AOX - MICO
         IN THE Y DIRECTION
               MATA(5,5) = 1.0D0
MATA(5,7) = -RBG1(3)
MATA(5,9) = RBG1(1)
                             = AOY - MJCO
               MATB(5)
         IN THE Z DIRECTION
               MATA(6,6) = 1.0D0

MATA(6,7) = RBG1(2)
               MATA(6,8) = -RBGI(1)
               MATB(6)
                             = AOZ - MKCO
         SUM OF MOMENTS EQUATIONS FOR LINK ONE IN THE X,Y,Z DIRECTIONS
               MATA(7,2) = RBG1(3)

MATA(7,3) = -RBG1(2)

MATA(7,7) = -IXXT(1)

MATA(7,8) = IXYT(1)

MATA(7,9) = IXZT(1)

MATA(7,11) = -RAG1(3)

MATA(7,12) = RAG1(2)
                                = RBG1(3)
= -RBG1(2)
= -IXXT(1)
= IXYT(1)
= IXZT(1)
= -RAG1(3)
               MATB(7)
                                = T1X - T0X
               MATA(8,1) = -RBG1(3)
```

```
MATA(8,3) = RBG1(1)

MATA(8,7) = IXYT(1)

MATA(8,8) = -IYYT(1)

MATA(8,9) = IYZT(1)

MATA(8,10) = RAG1(3)

MATA(8,12) = -RAG1(1)
        MATB(8)
                                = T1Y - T0Y
       MATA(9,1) = RBG1(
MATA(9,2) = -RBG1(
MATA(9,7) = IXZT(
MATA(9,8) = IYZT(
MATA(9,9) = -IZZT(
MATA(9,10) = -RAG1(
MATA(9,10) = -RAG1(
                                = RBG1(2)
                               = -RBG1\1\1
= IXZT(1\) + IXZT(2\) + IXZT(3\)
= IYZT(1\) + IYZT(2\) + IYZT(3\)
= -IZZT(1\) - IZZT(2\) - IZZT(3\)
= -RAG1\2\1
        MATA(9,11) = RAG1(1)
                               = T1Z - T0Z
        MATB(9)
LINK TWO
SUM OF FORCES IN X DIRECTION
        MATA(10,10) = 1.0D0
MATA(10,13) = MASS2
MATA(10,19) = -1.0D0
        MATB(10)
                              = 0.000
SUM OF FORCES IN THE Y DIRECTION
       MATA(11,11) = 1.0D0
MATA(11,14) = MASS2
MATA(11,20) = -1.0D0
        MATB(11)
                             = 0.000
SUM OF FORCES IN THE Z DIRECTION
        MATA(12,12) = 1.0D0
MATA(12,15) = MASS2
MATA(12,21) = -1.0D0
SUM OF FORCES LINK TWO EQUAL
        MATB(12)
                                  = -WG2
EQUATIONS AT JOINT ONE IN THE X DIRECTION
       MATA(13,4) = -1.0D0

MATA(13,8) = -RAG1(3)

MATA(13,9) = RAG1(2)

MATA(13,13) = 1.0D0

MATA(13,17) = RBG2(3)

MATA(13,18) = -RBG2(2)
        MATB(13) = MIC1 - MIC2
IN THE Y DIRECTION
        MATA(14,5) = -1.0D0

MATA(14,7) = RAG1(3)

MATA(14,9) = -RAG1(1)

MATA(14,14) = 1.0D0

MATA(14,16) = -RBG2(3)

MATA(14,18) = RBG2(1)
        MATB(14)
                              = MJC1 - MJC2
IN THE Z DIRECTION
        MATA(15,6) = -1.0D0

MATA(15,7) = -RAG1(2)

MATA(15,8) = RAG1(1)

MATA(15,15) = 1.0D0

MATA(15,16) = RBG2(2)

MATA(15,17) = -RBG2(1)
        MATB(15)
                                 = MKC1 - MKC2
SUM OF MOMENTS EQUATIONS FOR LINK TWO IN THE X.Y.Z DIRECTIONS
```

```
MATA(16,11) = RBG2(3)

MATA(16,12) = -RBG2(2)

MATA(16,16) = -IXXT(2)

MATA(16,17) = IXYT(2)

MATA(16,18) = IXZT(2)

MATA(16,20) = -RAG2(3)

MATA(16,21) = RAG2(2)
          MATB(16)
                                          (-T1X + T2X) * DCOS(RLRZ1)
         MATA(17,10)
MATA(17,12)
MATA(17,16)
MATA(17,17)
MATA(17,18)
MATA(17,19)
MATA(17,21)
                                  = -RBG2(3)
= RBG2(1)
= IXYT(2)
= -IYYT(2)
= IYZT(2)
= RAG2(3)
                                  = -RAG2(1)
         MATB(17)
                                  = (- T1Y + T2Y) * DSIN(RLRZ1)
         MATA(18,9) = -1.0D0
MATA(18,18) = 1.0D0
MATB(18) = 0.0D0
    MATA(18,10) = RBG2(2)
MATA(18,11) = -RBG2(1)
MATA(18,16) = IXZT(2) +
MATA(18,17) = IYZT(2) +
MATA(18,18) = -IZZT(2) -
MATA(18,19) = -RAG2(2)
MATA(18,20) = RAG2(1)
                                                      + IXZT(3)
+ IYZT(3)
- IZZT(3)
     MATB(18) = -T1Z + T2Z
LINK THREE
SUM OF FORCES IN THE X DIRECTION
        MATA(19,19) = 1.0D0
MATA(19,22) = MASS3
        MATB(19)
                                 = 0.0D0
SUM OF FORCES IN THE Y DIRECTION
        MATA(20,20) = 1.0D0
MATA(20,23) = MASS3
        MATB(20)
                                = 0.0D0
SUM OF FORCES IN THE Z DIRECTION
        MATA(21,21) =
        MATA(21,24) = MASS3
       MATB(21) = -WG3
EQUATIONS AT JOINT TWO
IN THE X DIRECTION
       MATA(22,13) = -1.0D0

MATA(22,17) = -RAG2(3)

MATA(22,18) = RAG2(2)

MATA(22,22) = 1.0D0

MATA(22,26) = RBG3(3)

MATA(22,27) = -RBG3(2)
       MATB(22)
                              = MIC3 - MIC4
IN THE Y DIRECTION
       MATA(23,14) = -

MATA(23,16) = -

MATA(23,18) = -

MATA(23,23) = -

MATA(23,25) = -

MATA(23,27) = -
                               = -1.000
                               = RAG2(3)
= -RAG2(1)
                                       1.0DÒ
                               = -RBG3(3)
                                      RBG3(1)
       MATB(23)
                                =
                                       MJC3 - MJC4
```

```
IN THE Z DIRECTION
                     MATA(24,15) = -1.0D0

MATA(24,16) = -RAG2(2)

MATA(24,17) = RAG2(1)

MATA(24,24) = 1.0D0

MATA(24,25) = RBG3(2)

MATA(24,26) = -RBG3(1)
                      MATB(24)
                                           = MKC3 - MKC4
              SUM OF MOMENTS EQUATIONS FOR LINK THREE IN THE X,Y,Z DIRECTIONS
                     MATA(25,20) = RBG3(3)

MATA(25,21) = -RBG3(2)

MATA(25,25) = -IXXT(3)

MATA(25,26) = IXYT(3)

MATA(25,27) = IXZT(3)
                                              = -T2X * DCOS(RLRZ1)
                      MATB(25)
                     MATA(26,19) = -RBG3(3)

MATA(26,21) = RBG3(1)

MATA(26,25) = IXYT(3)

MATA(26,26) = -IYYT(3)

MATA(26,27) = IYZT(3)
                     MATB(26)
                                             = -T2Y * DSIN(RLRZ1)
                     MATA(27,9) = -1.0D0
MATA(27,27) = 1.0D0
MATB(27) = 0.0D0
                 MATA(27,19) = RBG3(2)
MATA(27,20) = -RBG3(1)
MATA(27,25) = IXZT(3)
MATA(27,26) = IYZT(3)
MATA(27,27) = -IZZT(3)
×
×
                 MATB(27)
                                          = - T2Z
                     GO TO 1112
*
              INITIALIZE MATRIX ACCORDING TO CONSTRAINTS
*
              CONSTRAINTS GROUP 1 WHEN ONLY LINK THREE IS IN MOTION
                 DO 118 I = 1,18

DO 18 J = 1,27

MATA(I,J) = 0.0

MATA(I,I) = 1.0

MATB(I) = 0.0
*
*18
                      CONTINUE
                  CONTINUE
                 DO 181 I = 19,27
DO 81 J = 1,18
MATA(I,J) = 0.0
*81
                      CONTINUE
*181
                        CONTINUE
                GO TO 1111
*
              CONSTRAINTS GROUP 2 WHEN LINK TWO AND THREE ARE IN MOTION
                  DO 19 I = 1,9

DO 191 J = 1,27

MATA(I,J) = 0.0D0

MATA(I,I) = 1.0 D0

MATB(I) = 0.0D0
*
                         mATA(17,J) = 0.0D0
MATA(18,J) = 0.0D0
MATB(17) = 0.0D0
MATB(18) = 0.D0
                          MATA(J,17) = 0.0D0
```

```
MATA(J,18) = 0.000
                       mATA(17,17) = 1.0D0

MATA(18,18) = 1.0D0
*191
                    CONTINUE
*19
                CONTINUE
                DO 91 I = 10,27
DO 92 J = 1,9
MATA(I,J) = 0.0
*
                    CONTINÙE
*92
*9ī
                CONTINUE
★¥
                GO TO 1111
             CONSTRAINTS GROUP 3 WHEN THREE OF THE LINKS ARE IN MOTION
               DO 78 J = 1,27

MATA(7,J) =

MATA(8,J) =

MATA(J,7) =

MATA(J,8) =

MATB(7) =

MATB(8) =
                                      = 0.0D0
                                      = 0.000
                                      = 0.000
                                      = 0.000
                                      = 0.000
= 0.000
                   MATA(17,J) = 0.0D0

MATA(18,J) = 0.0D0

MATA(J,17) = 0.0D0

MATA(J,18) = 0.0D0

MATB(17) = 0.0D0
*
*
                                       = 0.000
                   MATB(18)
                   MATA(26,J) = 0.0D0

MATA(27,J) = 0.0D0

MATA(J,26) = 0.0D0

MATA(J,27) = 0.0D0

MATB(26) = 0.0D0

MATB(27) = 0.0D0
*
*
*
                  MATA(7,7) = 1.0D0

MATA(8,8) = 1.0D0

MATA(17,17) = 1.0D0

MATA(18,18) = 1.0D0

MATA(26,26) = 1.0D0

MATA(27,27) = 1.0D0
*78
                 CONTINUE
* CONSTRAINT GROUP 4 THE FIRST LINK IS CONSTRAINED TO ROTATE IN Z DIR.
                DO 48 I = 4,8

DO 481 J = 1,27

MATA(I,J) = 0.0D0

MATA(I,I) = 1.0 D0

MATB(I) = 0.0D0
 1112
  481
                CONTINUE
  48
                CONTINUE
                  DO 84 I = 9,27
DO 841 J = 4,8
MATA(I,J) = 0.0
                    CONTINUE
 841
                CONTINUE
 84
            CALL EQUATION SOLVER PROGRAM FROM IMSL
            CALL LEQT2F(MATA, M, N, IA, MATB, IDGT, WKAREA, IER)
            IF (IER .NE. 0) CALL ENDJOB
            FIND LCOGX, LCOGY, LCOGZ, THETA VALUES, WX, WY, WZ
            LINK ONE
                   AX1
                                     = MATB(4)
```

```
= INTGRL(0.,AX1)
= INTGRL(X1,VELX1)
            VELX1
            LCOGX1
            LCOGX(1)
                         = LCOGX1
                         = MATB(5)
= INTGRL(0.,AY1)
= INTGRL(Y1,VELY1)
            AY1
            VELY1
            LCOGY1
            LCOGY(1)
                         = LCOGY1
                         = MATB(6)
= INTGRL(0.,AZ1)
= INTGRL(Z1,VELZ1)
            AZ1
            VĒLZ1
            LCOGZ1
            LCOGZ(1)
                         = LCOGZ1
                         = MATB(7)
= INTGRL(0.,WD1X)
            WD1X
            WIX
WDX(1)
                         = WDIX
                         = W1X
            W1(1)
                         = MATB(8)
= INTGRL(0.,WD1Y)
= WD1Y
            WDlY
            WIY
WDY(1)
W1(2)
                         = WIY
                         = MATB(9)
= INTGRL(0.,WD1Z)
            WD1Z
            WIZ
            WDZ(1)
W1(3)
                         = WD1Z
        TRANSFORMATION MATRIX FROM EARTH FIXED TO BODY FIXED COORDINATE
        SYSTEM FOR LINK ONE
            MATIR(1,1) = DCOS(RLRZ1) * DCOS(PTRY1)
            MAT1R(2,1) = DCOS(RLRZ1) * DSIN(PTRY1) * DSIN(YWRX1) -...
DSIN(RLRZ1) * DCOS(YWRX1)
            MATIR(3,1) = DCOS(RLRZ1) * DSIN(PTRY1) * DCOS(YWRX1) +...
DSIN(RLRZ1) * DSIN(YWRX1)
            MATIR(1,2) = DSIN(RLRZ1)*DCOS(PTRY1)
            MATIR(2,2) = DSIN(RLRZ1) * DSIN(PTRY1) * DSIN(YWRX1) + ...
            DCOS(RLRZ1) * DCOS(YWRX1)
            MATIR(3,2) = DSIN(RLRZ1) * DSIN(PTRY1) * DCOS(YWRX1) -...
DCOS(RLRZ1) * DSIN(YWRX1)
            MATIR(1,3) = -DSIN(PTRY1)
            MATIR(2,3) = DCOS(PTRY1) * DSIN(YWRX1)
            MATIR(3,3) = DCOS(PTRY1) * DCOS(YWRX1)
       GET THE VELOCITIES OF LINK ONE IN BODY FIXED COORDINATE SYSTEM
            DO 605 J = 1.3
               SUM1 = 0.000
                  DO 606 K = 1,3

SUM1 = SUM1 + MAT1R(J,K) * W1(K)
               CONTINUE
606
               BRATE1(J) = SUM1
605
       TRANSFORMATION MATRIX FROM BODY FIXED TO NON-OPTHOGONAL EULER
       COORDINATE SYSTEM FOR LINK ONE
            MAT1T(1,1) = 0.0D0
MAT1T(2,1) = 1.0D0
            MATIT(3,1) = 0.000
            MAT1T(1,2) = MAT1T(2,2) = MAT1T(3,2) =
                              DCOS(YWRX1)
DTAN(PTRY1) * DSIN(YWRX1)
1.0D0/DCOS(PTRY1) * DSIN(YWRX1)
                          = -DSIN(YWRX1)
= DTAN(PTRY1) * DCOS(YWRX1)
= 1.D0/DCOS(PTRY1) * DCOS(YWRX1)
       GET THE VELOCITIES OF LINK ONE IN THE EULER COORDINATE SYSTEM
```

```
DO 705 J = 1.3
SUM1 = 0.000
                       DO 706 K = 1,3
SUM1 = SUM1 + MATIT(J,K) * BRATE1(K)
  706
                    CONTINUE
                    RATEl(J) = SUM1
              CONTINUE
  705
                RATE1X = RATE1(1)
RATE1Y = RATE1(2)
RATE1Z = RATE1(3)
           INTEGRATION OF THE VELOCITIES OF LINK ONE IN EULER COOR. SYSTEM
                YWRX1 = INTGRL(0.,RATE1X)
PTRY1 = INTGRL(0.,RATE1Y)
RLRZ1 = INTGRL(-PI/2.,RATE1Z)
          CONVERT THE ANGLES TO DEGREES
                YAWANX(1) = YWRX1 * RADEG
PTCANY(1) = PTRY1 * RADEG
ROLANZ(1) = RLRZ1 * RADEG
          GET THE DIRECTION COSINES FOR THE LINK ONE
                DRCSY(1) = DCOS(RLRZ1) * DSIN(PTRY1) * DCOS(YWRX1) +...
DSIN(RLRZ1) * DSIN(YWRX1)
                DRCSX(1) = DSIN(RLRZ1) * DSIN(PTRY1) * DCOS(YWRX1) -...
DCOS(RLRZ1) * DSIN(YWRX1)
                DRCSZ(1) = DCOS(PTRY1) * DCOS(YWRX1)
                DRCRAX(1) = DACOS(DRCSX(1))
DRCRAY(1) = DACOS(DRCSY(1))
DRCRAZ(1) = DACOS(DRCSZ(1))
                DRCANX(1) = DACOS(DRCSX(1)) * RADEG
DRCANY(1) = DACOS(DRCSY(1)) * RADEG
DRCANZ(1) = DACOS(DRCSZ(1)) * RADEG
          LINK TWO
                            = MATB(13)
9
             AX2
                               = INTGRL(0.,AX2)
= INTGRL(X2,VELX2)
                VELX2
                LCOGX2
                LCOGX(2) = LCOGX2
                               = MATB(14)
= INTGRL(0.,AY2)
= INTGRL(Y2,VELY2)
                AY2
                VELY2
                LCOGY2
                LCOGY(2)
                              = LCOGY2
                               = MATB(15)
= INTGRL(0.,AZ2)
= INTGRL(Z2,VELZ2)
                AZ2
                VELZ2
                LCOGZ2
                LCOGZ(2)
                               = LCOGZ2
                               = MATB(16)
= INTGRL(0.,WD2X)
                WD2X
                W2X
WDX(2)
W2(1)
                                = WD2X
                               = W2X
                               = MATB(17)
= INTGRL(0.,WD2Y)
= WD2Y
                WDZY
                W2Y
                WDY(2)
W2(2)
                               = W2Y
                WDZZ
                               = MATB(18)
                               = INTGRL(Ó., WD2Z)
= WD2Z
                W2Z
WDZ(2)
W2(3)
                               = W2Z
          TRANSFORMATION MATRIX FROM EARTH FIXED TO BODY FIXED COORDINATE
          SYSTEM FOR LINK TWO
                MAT2R(1,1) = DCOS(RLRZ2) * DCOS(PTRY2)
```

```
MAT2R(2,1) = DCOS(RLRZ2) * DSIN(PTRY2) * DSIN(YWRX2) -...
DSIN(RLRZ2) * DCOS(YWRX2)
            MAT2R(3,1) = DCOS(RLRZ2) * DSIN(PTRY2) * DCOS(YWRX2) +...
DSIN(RLRZ2) * DSIN(YWRX2)
            MAT2R(1,2) = DSIN(RLRZ2) * DCOS(PTRY2)
            MAT2R(2,2) = DSIN(RLRZ2) * DSIN(PTRY2) * DSIN(YWRX2) +...
DCOS(RLRZ2) * DCOS(YWRX2)
            MAT2R(3,2) = DSIN(RLRZ2) * DSIN(PTRY2) * DCOS(YWRX2) -...
DCOS(RLRZ2) * DSIN(YWRX2)
            MAT2R(1,3) = -DSIN(PTRY2)
            MAT2R(2,3) = DCOS(PTRY2) * DSIN(YWRX2)
            MAT2R(3,3) = DCOS(PTRY2) * DCOS(YWRX2)
       GET THE VELOCITIES OF LINK TWO IN BODY FIXED COORDINATE SYSTEM
            DO 607 J = 1.3
SUM1 = 0.0D0
                   DO 608 K =
                                 1,3
                      SUM1 = SUM1 + MAT2R(J,K) * W2(K)
608
                CONTINUE
               BRATE2(J) = SUM1
          CONTINUE
607
       TRANSFORMATION MATRIX FROM BODY FIXED TO NON-ORTHOGONAL EULER
       COORDINATE SYSTEM FOR LINK TWO
            MAT2T(1,1) = 0.0D0
MAT2T(2,1) = 1.0D0
MAT2T(3,1) = 0.0D0
            MAT2T(1,2) =
MAT2T(2,2) =
MAT2T(3,2) =
                              DCOS(YWRX2)
DTAN(PTRY2) * DSIN(YWRX2)
1.0D0/DCOS(PTRY2) * DSIN(YWRX2)
            MAT2T(1,3) = -DSIN(YWRX2)
MAT2T(2,3) = DTAN(PTRY2) * DCOS(YWRX2)
MAT2T(3,3) = 1.0D0/DCOS(PTRY2) * DCOS(YWRX2)
       GET THE VELOCITIES OF LINK TWO IN THE EULER COORDINATE SYSTEM
            DO 707 J = 1,3
SUM1 = 0.0D0
                   DO 708 K = 1,3
                      SUM1 = SUM1 + MAT2T(J,K) * BRATE2(K)
708
                CONTINUE
               RATE2(J) = SUM1
707
          CONTINUE
            RATE2X = RATE2(1)
RATE2Y = RATE2(2)
            RATE2Z = RATE2(3)
       INTEGRATION OF THE VELOCITIES OF LINK TWO IN EULER COOR. SYSTEM
            YWRX2 = INTGRL(0.,RATE2X)
PTRY2 = INTGRL(0.,RATE2Y)
            RLRZ2 = INTGRL(-PI/2., RATE2Z)
       CONVERT THE ANGLES TO DEGREES
            YAWANX(2) = YWRX2 * RADEG
PTCANY(2) = PTRY2 * RADEG
ROLANZ(2) = RLRZ2 * RADEG
       GET THE DIRECTION COSINES FOR THE LINK TWO
            DRCSY(2) = DCOS(RLRZ2) * DSIN(PTRY2) * DSIN(YWRX2) -...
            DSIN(RLRZ2) * DCOS(YWRX2)
            DRCSX(2) = DSIN(RLRZ2) * DSIN(PTRY2)*DSIN(YWRX2) +...
DCOS(RLRZ2) * DCOS(YWRX2)
            DRCSZ(2) = DCOS(PTRY2) * DSIN(YWRX2)
            DRCRAX(2) = DACOS(DRCSX(2))
```

```
DRCRAY(2) = DACOS(DRCSY(2))
DRCRAZ(2) = DACOS(DRCSZ(2))
              DRCANX(2) = DACOS(DRCSX(2))
DRCANY(2) = DACOS(DRCSY(2))
DRCANZ(2) = DACOS(DRCSZ(2))
                                                    * RADEG
                                                    * RADEG
                                                    * RADEG
                         (L(1,1) + L(1,2)) * DCOS(DRCRAX(1))
(L(1,1) + L(1,2)) * DCOS(DRCRAY(1))
(L(1,1) + L(1,2)) * DCOS(DRCRAZ(1))
*
         LINK THREE
            AX3
                         = MATB(22)
                           = INTGRL(0.,AX3)
= INTGRL(X3,VELX3)
              VELX3
              LCOGX3
                          = LCOGX3
              LCOGX(3)
                           = MATB(23)
= INTGRL(0.,AY3)
= INTGRL(Y3,VELY3)
              AY3
              VELY3
              LCOGY3
              LCOGY(3)
                           = LCOGY3
              AZ3
                           = MATB(24)
                           = INTGRL(0.,AZ3)
= INTGRL(Z3,VELZ3)
              VELZ3
              LCOGZ3
                          = LCOGZ3
              LCOGZ(3)
              WD3X
                           = MATB(25)
= INTGRL(0.,WD3X)
              W3X
WDX(3)
                           = WD3X
              W3(1)
                           = W3X
              WD3Y
                           = MATB(26)
              W3Y
WDY(3)
W3(2)
                           = INTGRL(Ó.,WD3Y)
= WD3Y
                           = W3Y
              WD3Z
                           = MATB(27)
                           = INTGRL(0.,WD3Z)
= WD3Z
              W3Z
              WDZ(3)
W3(3)
         TRANSFORMATION MATRIX FROM EARTH FIXED TO BODY FIXED COORDINATE
         SYSTEM FOR LINK THREE
              MAT3R(1,1) = DCOS(RLRZ3) * DCOS(PTRY3)
              MAT3R(2,1) = DCOS(RLRZ3) * DSIN(PTRY3) * DSIN(YWRX3) -...
DSIN(RLRZ3) * DCOS(YWRX3)
              MAT3R(3,1) = DCOS(RLRZ3) * DSIN(PTRY3) * DCOS(YWRX3) +...
DSIN(RLRZ3) * DSIN(YWRX3)
              MAT3R(1,2) = DSIN(RLRZ3) * DCOS(PTRY3)
              MAT3R(2,2) = DSIN(RLRZ3) * DSIN(PTRY3) * DSIN(YWRX3) +...
DCOS(RLRZ3) * DCOS(YWRX3)
              MAT3R(3,2) = DSIN(RLRZ3) * DSIN(PTRY3) * DCOS(YWRX3) -...
DCOS(RLRZ3) * DSIN(YWRX3)
              MAT3R(1,3) = -DSIN(PTRY3)
              MAT3R(2,3) = DCOS(PTRY3) * DSIN(YWRX3)
              MAT3R(3,3) = DCOS(PTRY3) *DCOS(YWRX3)
         GET THE VELOCITIES OF LINK THREE IN BODY FIXED COORDINATE SYSTEM
              DO 609 J = 1,3
SUM1 = 0.0D0
DO 610 K = 1,3
                        SUM1 = SUM1 + MAT3R(J,K) * W3(K)
 610
                  CONTINUE
                  BRATE3(J) = SUM1
 609
            CONTINUE
         TRANSFORMATION MATRIX FROM BODY FIXED TO NON-ORTHOGONAL EULER
         COORDINATE SYSTEM FOR LINK THREE
```

```
MAT3T(1,1) = 0.0D0
MAT3T(2,1) = 1.0D0
MAT3T(3,1) = 0.0D0
                    MAT3T(1,2) = DCOS(YWRX3)
MAT3T(2,2) = DTAN(PTRY3) * DSIN(YWRX3)
MAT3T(3,2) = 1.0D0/DCOS(PTRY3) * DSIN(YWRX3)
                    MAT3T(1 3) = -DSIN(YWRX3)
MAT3T(2,3) = DTAN(PTRY3) * DCOS(YWRX3)
MAT3T(3,3) = 1.0DO/DCOS(PTRY3) * DCOS(YWRX3)
             GET THE VELOCITIES OF LINK THREE IN THE EULER COORDINATE SYSTEM
                    DO 709 J = 1,3

SUM1 = 0.0D0

DO 710 K = 1,3

SUM1 = SUM1 + MAT3T(J,K) * BRATE3(K)
  710
                         CONTINUE
                         RATE3(J) = SUM1
  709
                 CONTINUE
                    RATE3X = RATE3(1)
RATE3Y = RATE3(2)
RATE3Z = RATE3(3)
             INTEGRATION OF THE VELOCITIES OF LINK THREE IN EULER COOR. SYSTEM
                    YWRX3 = INTGRL(0.,RATE3X)
PTRY3 = INTGRL(0.,RATE3Y)
RLRZ3 = INTGRL(-PI/2.,RATE3Z)
             CONVERT THE ANGLES TO DEGREES
                    YAWANX(3) = YWRX3 * RADEG
PTCANY(3) = PTRY3 * RADEG
ROLANZ(3) = RLRZ3 * RADEG
             GET THE DIRECTION COSINES FOR THE LINK THREE
                    DRCSY(3) = DCOS(RLRZ3) * DSIN(PTRY3) * DSIN(YWRX3) -...
DSIN(RLRZ3) * DCOS(YWRX3)
                    DRCSX(3) = DSIN(RLRZ3) * DSIN(PTRY3) * DSIN(YWRX3) +...
DCOS(RLRZ3) * DCOS(YWRX3)
                    DRCSZ(3) = DCOS(PTRY3) * DSIN(YWRX3)
                    DRCRAX(3) = DACOS(DRCSX(3))
DRCRAY(3) = DACOS(DRCSY(3))
DRCRAZ(3) = DACOS(DRCSZ(3))
                    DPCANX(3) = DACOS(DRCSX(3)) *
DRCANY(3) = DACOS(DRCSY(3)) *
DRCANZ(3) = DACOS(DRCSZ(3)) *
                                                                            RADEG
                                                                            RADEG
                                                             L(2,2)}
L(2,2)}
L(2,2)}
                                                                            * DCOS(DRCRAY(2))
* DCOS(DRCRAY(2))
* DCOS(DRCRAZ(2))
                    JX2 = JX1 +
JY2 = JY1 +
JZ2 = JZ1 +
                                           L(2,1)
L(2,1)
L(2,1)
                                                         +++
                                            (L(3,1) + L(3,2)) * DCOS(DRCRAX(3))
(L(3,1) + L(3,2)) * DCOS(DRCRAY(3))
(L(3,1) + L(3,2)) * DCOS(DRCRAZ(3))
DYNAMIC
NOSORT
             INPUT TORQUE AT JOINTS
                               TOZ = A * SIN (W * TIME + P)
T1X =-10 * SIN (W * TIME + P)
T2X = A * SIN (W * TIME + P)
END
STOP
FORTRAN
```

```
* SUBROUTINE TO COMPUTE THE CROSS PRODUCT OF TWO VECTORS

SUBROUTINE CPROD(VECTA, VECTB, MI, MJ, MK)

IMPLICIT REAL*8 (A-Z)

DIMENSION VECTA(3), VECTB(3)

MI = VECTA(2) * VECTB(3) - VECTA(3) * VECTB(2)

MJ = VECTA(3) * VECTB(1) - VECTA(1) * VECTB(3)

MK = VECTA(1) * VECTB(2) - VECTA(2) * VECTB(1)

RETURN
END
```

APPENDIX C

THREE DIMENSIONAL SIMULATION PROGRAM INVESTIGATION OF SINGULAR CONFIGURATION

```
TERMINAL
   METHOD ADAMS
 METHOD ADAMS
PRINT .05, ERROR, ANG12Z, ANG23Z
CONTROL FINTIM = 4.0, DELMAX =.1, DELPRT = .05
SAVE .05, ERROR, ANG12X, ANG12Y, ANG12Z, THETAB, THETAD, ANG23X, ANG23Y,...
ANG23Z, IYYT(2), IXXT(2), IZZT(2)
GRAPH(DE=TEK618) TIME, ANG12X
GRAPH(DE=TEK618) TIME, ANG12Y
GRAPH(DE=TEK618) TIME, ANG12Z
GRAPH(DE=TEK618) TIME, ANG23X
GRAPH(DE=TEK618) TIME, ANG23Y
GRAPH(DE=TEK618) TIME, ANG12Z
GRAPH(DE=TEK618) TIME, ANG23X
GRAPH(DE=TEK618) TIME, ANG23Z
GRAPH(DE=TEK618) TIME, THETAB
GRAPH(DE=TEK618) TIME, THETAB
GRAPH(DE=TEK618) TIME, IYYT(2), IXXT(2), IZZT(2)

D DIMENSION MATA(27,27), MASS(3,2), L(3,2), RX(3,2), RY(3,2), RZ(3,2)

D DIMENSION MATA(27,27), MASS(3,2), L(3,2), RY(3,2), IYZ(3,2), IZZ(3,2)

D DIMENSION MATIR(3,3), MAT2R(3,3), MAT3R(3,3)

D DIMENSION MAT1T(3,3), MAT2T(3,3), MAT3T(3,3)

D DIMENSION MAT1T(3,3), MAT2T(3,3), MAT3T(3,3)

EXCLUDE IA, IDGT, IER, I, J, M, K, P, N, A

ARRAY MATB(27), LCOGX(3), LCOGY(3), LCOGZ(3)

ARRAY VECTAO(3), VECTBO(3), VECTA1(3), VECTB1(3), VECTA2(3), VECTB2(3)

ARRAY WDX(3), WDY(3), WDZ(3), W1(3), W2(3), W3(3), MATC(27), DO(27)

ARRAY RATE1(3), RATE2(3), RATE3(3), BRATE1(3), BRATE2(3), BRATE3(3)

ARRAY RBG1(3), RAG1(3), RBG2(3), RAG2(3), RBG3(5)

ARRAY SUMHDX(3), SUMHDY(3), SUMHDZ(3), HDX(2), HDY(2), HDZ(2), WKAREA(850)

ARRAY JAWANX(3), PTCANY(3), ROLANZ(3)

ARRAY JAWANX(3), DRCANY(3), DRCANZ(3)

ARRAY DRCANX(3), DRCSY(3), DRCSZ(3)

D DATA MATA/729 * 0.0D0/
  INITIAL
                              INPUT PARAMETER CONSTANTS
                                                  A = 3.0D0
                                                 P = 0.0D0
W = PI /
IDGT = 3
                                                                                     2.0D0
                                                 G=0.0D0
N=27
                                                  M=1
                                                  IA = 27
                              INPUT JOINT LOCATIONS IN METERS
                                                   JX0 = 0.0D0
                                                   JYO = 0.0DO
                                                  JZO = 0.0D0
JX1 = 0.0D0
                                                   JY1 = 0.0D0
                                                   JZ1 = 1.0D0
                              USE THE NEXT SET OF JOINT TWO COORDINATES FOR CASE A
                                                  JX2 = 0.0D0

JY2 = 1.0D0
                                                   JZ\bar{2} = \bar{1.0}D0
                               USE THE NEXT SET OF JOINT TWO COORDINATES FOR CASE B
```

```
JX2 = 1.0D0

JY2 = 0.0D0
                     JZ\bar{2} = 1.0D0
               USE THE NEXT SET OF JOINT TWO COORDINATES FOR CASE C
                      JX2 = 0.000
                     JY2 = 0.0D0
JZ2 = 2.0D0
*
               INPUT DISTANCE FROM CENTER OF LINK TO CENTER OF MASS FOR
               EACH LINK ENDS
                         L(1,1) = 0.50D0

L(1,2) = 0.50D0

L(2,1) = 0.50D0

L(2,2) = 0.50D0

L(3,1) = 0.50D0

L(3,2) = 0.50D0
               INPUT MASS AT LINK ENDS IN KILOGRAMS
                         MASS(1,1) = 2.5D0
MASS(1,2) = 2.5D0
MASS(2,1) = 2.5D0
MASS(2,2) = 2.5D0
MASS(3,1) = 2.5D0
MASS(3,2) = 2.5D0
               INPUT OMEGA AND OMEGA DOT
                          DO 30 I = 1.3
                                    W1(I)
W2(I)
W3(I)
WDX(I)
WDY(I)
WDZ(I)
                                                          = 0.000
                                                          = 0.000
                                                          = 0.000
                                                         = 0.000
                                                         = 0.000
                                                          = 0.000
30
                       CONTINUE
               INPUT LOCATION OF LINK CENTERS OF GRAVITY LINK ONE
                         ONE

LCOGX(1) = 0.0D0

X1 = LCOGX(1)

LCOGY(1) = 0.0D0

Y1 = LCOGY(1)

LCOGZ(1) = 0.5D0

Z1 = LCOGZ(1)
               NEXT SET FOR LINK TWO AND THREE TO USE FOR CASE A
                            LCOGX(2) = 0.0D0

X2 = LCOGX(2)

LCOGY(2) = 0.5D0

Y2 = LCOGY(2)

LCOGZ(2) = 1.0D0

Z2 = LCOGZ(2)

LCOGX(3) = 0.0D0

X3 = LCOGX(3)

LCOGY(3) = 1.5D0

Y3 = LCOGY(3)

LCOGZ(3) = 1.0D0

\begin{array}{rcl}
LCOGZ(3) &=& 1.0D0 \\
Z3 &=& LCOGZ(3)
\end{array}

               NEXT SET FOR LINK TWO AND THREE TO USE FOR CASE B
                        LCOGX(2) = 0.5D0
                       LCOGX(2) = 0.5D0

X2 = LCOGX(2)

LCOGY(2) = 0.0D0

Y2 = LCOGY(2)

LCOGZ(2) = 1.0D0

Z2 = LCOGZ(2)

LCOGX(3) = 1.5D0

X3 = LCOGX(3)
```

```
LCOGY(3) = 0.0D0
Y3 = LCOGY(3)
                  LCOGZ(3) = 1.0D0
Z3 = LCOGZ(3)
             NEXT SET FOR LINK TWO AND THREE TO USE FOR CASE C
                  LCOGX(2) = 0.0D0

X2 = LCOGX(2)

LCOGY(2) = 0.0D0

Y2 = LCOGY(2)

LCOGZ(2) = 1.5D0

Z2 = LCOGZ(2)

LCOGX(3) = 0.0D0 

X3 = LCOGX(3)

                  X3 = LCOGX(3)

LCOGY(3) = 0.0DO

Y3 = LCOGY(3)

LCOGZ(3) = 2.5DO

Z3 = LCOGZ(3)
*
            INPUT MASS OF EACH LINK IN KG AND COMPUTE WEIGHTS IN NEWTONS
×
                       MASS1 = 5.000
                       MASS2 = 5.0D0
MASS3 = 5.0D0
                       WG1 = MASS1*G
                       WG2 = MASS2*G
WG3 = MASS3*G
            INPUT ACCELERATION OF JOINT ZERO
                       AOX = 0.0D0
                       AOY = 0.0D0
                       AOZ = 0.0D0
            INITIALIZE MATRIX A AND B TO ZERO
                       DO 40 I = 1,27

DO 50 J = 1,27

MATA(I,J) = 0.0D0

DO(I) = 0.0D0

MATC(I) = 0.0D0
                       CONTINUE
  50
                    CONTINUE
                       DO 60 I = 1,27
                           MATB(I) = 0.0D0
  60
                    CONTINUE
            INITIALIZE THE INITIAL VELOCITIES AND TRANSFORMATION MATRICIES
                       DO 63 I = 1,3
DO 64 J = 1,3
                               RATE1(I)
RATE2(I)
RATE3(I)
BRATE1(I)
BRATE2(I)
BRATE3(I)
                                                     = 0.000
                                                     = 0.000
                                                    = 0.000
                                                     = 0.000
                                                     = 0.000
                                                     = 0.000
                               MAT1T (I,J) = 0.0D0

MAT2T (I,J) = 0.0D0

MAT3T (I,J) = 0.0D0

MAT1R (I,J) = 0.0D0

MAT2R (I,J) = 0.0D0

MAT3R (I,J) = 0.0D0
  64
63
                        CONTINUE
                  CONTINUE
DERIVATIVE
NOSORT
               CALL ERRSET (208,256,-1,1,1)

LEVELQ = 0

CALL UERSET(LEVELQ,LEVLDQ)
```

```
INITIALIZE MATRIX A AND B TO ZERO
                    DO 70 I = 1,27

DO 80 J = 1,27

MATA(I,J) = 0.0D0
80
70
                    CONTINUE
                 CONTINUE
                    DO 90 I = 1,27

MATB(I) = 0.0D0

DO(I) = 0.0D0
90
                 CONTINUE
          INPUT JOINT EQUATIONS
          JOINT ZERO EQUATIONS
          AB = AG1 + (WD1 \times RB/G1) + W1 \times (W1 \times RB/G1)
                          VECTAO(1) = WDX(1)
VECTAO(2) = WDY(1)
VECTAO(3) = WDZ(1)
                          RBG1(1) = JX0 - LCOGX(1)
RBG1(2) = JY0 - LCOGY(1)
RBG1(3) = JZ0 - LCOGZ(1)
                    CALL CPROD(VECTAO, RBG1, MIAO, MJAO, MKAO)
                          VECTAO(1) = W1(1)
VECTAO(2) = W1(2)
VECTAO(3) = W1(3)
                    CALL CPROD(VECTAO, RBG1, MIBO, MJBO, MKBO)
                          VECTBO(1) = MIBO
VECTBO(2) = MJBO
VECTBO(3) = MKBO
                    CALL CPROD(VECTAO, VECTBO, MICO, MJCO, MKCO)
         JOINT ONE EQUATIONS ---
         AA = AG1 + (WD1 \times RA/G1) + W1 \times (W1 \times RA/G1)
                          VECTA1(1) = WDX(1)
VECTA1(2) = WDY(1)
VECTA1(3) = WDZ(1)
                          RAG1(1) = JX1 - LCOGX(1)
RAG1(2) = JY1 - LCOGY(1)
RAG1(3) = JZ1 - LCOGZ(1)
                    CALL CPROD(VECTA1, RAG1, MIA1, MJA1, MKA1)
                          VECTA1(1) = W1(1)
VECTA1(2) = W1(2)
VECTA1(3) = W1(3)
                    CALL CPROD (VECTA1, RAG1, MIB1, MJB1, MKB1)
                          VECTB1(1) = MIB1
VECTB1(2) = MJB1
VECTB1(3) = MKB1
                    CALL CPROD (VECTA1, VECTB1, MIC1, MJC1, MKC1)
           AB = AG2 + (WD2 \times RB/G2) + W2 \times (W2 \times RB/G2)
                          VECTA1(1) = WDX(2)
VECTA1(2) = WDY(2)
VECTA1(3) = WDZ(2)
                          RBG2(1) = JX1 - LCOGX(2)
RBG2(2) = JY1 - LCOGY(2)
RBG2(3) = JZ1 - LCOGZ(2)
                      CALL CPROD (VECTA1, RBG2, MIA2, MJA2, MKA2)
                          VECTA1(1) = W2(1) 
VECTA1(2) = W2(2)
```

```
VECTA1(3) = W2(3)
                    CALL CPROD (VECTA1.RBG2,MIB2,MJB2,MKB2)
                        VECTB1(1) = MIB2
VECTB1(2) = MJB2
VECTB1(3) = MKB2
                    CALL CPROD (VECTA1, VECTB1, MIC2, MJC2, MKC2)
     JOINT TWO EQUATIONS
     AA = AG2 + (WD2 \times RA/G2) + W2 \times (W2 \times RA/G2)
                        VECTA2(1) = WDX(2)
VECTA2(2) = WDY(2)
VECTA2(3) = WDZ(2)
                        RAG2(1) = JX2 - LCOGX(2)
RAG2(2) = JY2 - LCOGY(2)
RAG2(3) = JZ2 - LCOGZ(2)
                    CALL CPROD (VECTA2, RAG2, MIA3, MJA3, MKA3)
                        VECTA2(1) = W2(1)
VECTA2(2) = W2(2)
VECTA2(3) = W2(3)
                   CALL CPROD (VECTA2, RAG2, MIB3, MJB3, MKB3)
                        VECTB2(1) = MIB3
VECTB2(2) = MJB3
VECTB2(3) = MKB3
                   CALL CPROD(VECTA2, VECTB2, MIC3, MJC3, MKC3)
     AB = AG3 + (WD3 \times RB/G3) + W3 \times (W3 \times RB/G3)
                        VECTA2(1) = WDX(3)
VECTA2(2) = WDY(3)
VECTA2(3) = WDZ(3)
                        RBG3(1) = JX2 - LCOGX(3)
RBG3(2) = JY2 - LCOGY(3)
RBG3(3) = JZ2 - LCOGZ(3)
                   CALL CPROD (VECTA2, RBG3, MIA4, MKA4, MKA4)
                        VECTA2(1) = W3(1)
VECTA2(2) = W3(2)
VECTA2(3) = W3(3)
                   CALL CPROD (VECTA2, RBG3, MIB4, MJB4, MKB4)
                        VECTB2(1) = MIB4
VECTB2(2) = MJB4
VECTB2(3) = MKB4
                   CALL CPROD (VECTA2, VECTB2, MIC4, MJC4, MKC4)
     SUM OF MOMENTS EQUATIONS
        DO 100 I = 1.3
COMPUTE HX, HDOT X, HY, HDOT Y, HZ, HDOT Z
                       RX(I,1) = -L(I,1) * DCOS(DRCRAX(I))

RX(I,2) = L(I,2) * DCOS(DRCRAX(I))

RY(I,1) = -L(I,1) * DCOS(DRCRAY(I))

RY(I,2) = L(I,2) * DCOS(DRCRAY(I))

RZ(I,1) = -L(I,1) * DCOS(DRCRAZ(I))

RZ(I,2) = L(I,2) * DCOS(DRCRAZ(I))
     IXX(I,1) = MASS(I,1) * ((RY(I,1) * RY(I,1)) + (RZ(I,1) * RZ(I,1)))
IXX(I,2) = MASS(I,2) * ((RY(I,2) * RY(I,2)) + (RZ(I,2) * RZ(I,2)))
IXXT(I) = IXX(I,1) + IXX(I,2)
IF (IXXT(I) .LE. .020) THEN
IXXT(I) = .020
     ELSE
     IXXT(I) = IXXT(I)
END IF
```

```
IXY(I,1) = MASS(I,1) * RX(I,1) * RY(I,1)

IXY(I,2) = MASS(I,2) * RX(I,2) * RY(I,2)

IXYT(I) = IXY(I,1) + IXY(I,2)
           IYY(I,1) = MASS(I,1) * ((RX(I,1) * RX(I,1)) + (RZ(I,1) * RZ(I,1)))

IYY(I,2) = MASS(I,2) * ((RX(I,2) * RX(I,2)) + (RZ(I,2) * RZ(I,2)))

IYYT(I) = IYY(I,1) + IYY(I,2)

IF (IYYT(I) .LE. .020) THEN

IYYT(I) = .020
           ELSE
           IYYT(I) = IYYT(I)
END IF
           \begin{array}{lll} & \text{IYZ}(\text{I},1) & = & \text{MASS}(\text{I},1) & * & \text{RY}(\text{I},1) & * & \text{RZ}(\text{I},1) \\ & \text{IYZ}(\text{I},2) & = & \text{MASS}(\text{I},2) & * & \text{RY}(\text{I},2) & * & \text{RZ}(\text{I},2) \\ & \text{IYZT}(\text{I}) & = & \text{IYZ}(\text{I},1) & + & \text{IYZ}(\text{I},2) \end{array}
           IZZ(I,1) = MASS(I,1) * ((RX(I,1) * RX(I,1)) + (RY(I,1) * RY(I,1)))

IZZ(I,2) = MASS(I,2) * ((RX(I,2) * RX(I,2)) + (RY(I,2) * RY(I,2)))

IZZT(I) = IZZ(I,1) + IZZ(I,2)

IF (IZZT(I) .LE. .020) THEN

IZZT(I) = .020
           ELSE
           IZZT(I) = IZZT(I)
END IF
           \begin{array}{lll} \text{SUMHDX(I)} &=& \text{HDX(1)} &+& \text{HDX(2)} \\ \text{SUMHDY(I)} &=& \text{HDY(1)} &+& \text{HDY(2)} \\ \text{SUMHDZ(I)} &=& \text{HDZ(1)} &+& \text{HDZ(2)} \end{array}
100
               CONTINUE
           ENTER CONSTANTS INTO MATRIX A
           LINK ONE
           SUM OF FORCES IN THE X DIRECTION
                  MATA(1,1) = 1.0D0
                  MATA(1,4) = MASS1
MATA(1,10) = -1.000
           SUM OF FORCES IN Y DIRECTION
                  MATA(2,2) = 1.0D0
MATA(2,5) = MASS1
MATA(2,11) = -1.0D0
           SUM OF FORCES IN Z DIRECTION
                  MATA(3,3) = 1.0D0

MATA(3,6) = MASS1
                  MATA(3,12) = -1.000
           EQUATIONS AT JOINT ZERO
           IN THE X DIRECTION
                  MATA(4,4) = 1.0D0
MATA(4,8) = RBG1(3)
MATA(4,9) = -RBG1(2)
           IN THE Y DIRECTION
                  MATA(5,5) = 1.0D0
MATA(5,7) = -RBG1(3)
MATA(5,9) = RBG1(1)
```

```
IN THE Z DIRECTION
        MATA(6,6) = 1.0D0
MATA(6,7) = RBG1(2)
MATA(6,8) = -RBG1(1)
SUM OF MOMENTS EQUATIONS FOR LINK ONE IN THE X,Y,Z DIRECTIONS
        MATA(7,2)
MATA(7,3)
MATA(7,7)
MATA(7,8)
MATA(7,9)
MATA(7,11)
                                 = RBG1(3)
= -RBG1(2)
= -IXXT(1)
                                  =
                                       IXYT(1
                                 = IXZT(1)
= -RAG1(3)
                                       RAG1(2)
         MATA(7,12)
        MATA(8,1)
MATA(8,3)
MATA(8,7)
                                  = -RBG1(3)
= RBG1(1)
= IXYT(1)
                                 = -IYYT\langle 1
= IYZT(1
        MATA(8,8)
MATA(8,9)
MATA(8,10)
                                 = IYZT(1)
= RAG1(3)
         MATA(8,12)
                                 = -RAG1(1)
        MATA(9,1) = RBG1(2)

MATA(9,2) = -RBG1(1)

MATA(9,7) = IXZT(1)

MATA(9,8) = IYZT(1)

MATA(9,9) = -IZZT(1)

MATA(9,10) = -RAG1(2)

MATA(9,11) = RAG1(1)
                                                               IXZT(2) + IXZT(3)
IYZT(2) + IYZT(3)
IZZT(2) - IZZT(3)
LINK TWO
SUM OF FORCES IN X DIRECTION
        MATA(10,10) = 1.0D0
MATA(10,13) = MASS2
MATA(10,19) = -1.0D0
SUM OF FORCES IN THE Y DIRECTION
        MATA(11,11) = 1.0D0
MATA(11,14) = MASS2
MATA(11,20) = -1.0D0
SUM OF FORCES IN THE Z DIRECTION
        MATA(12,12) = 1.0D0
MATA(12,15) = MASS2
MATA(12,21) = -1.0D0
EQUATIONS AT JOINT ONE
IN THE X DIRECTION
        MATA(13,4) = -1.0D0

MATA(13,8) = -RAG1(3)

MATA(13,9) = RAG1(2)

MATA(13,13) = 1.0D0

MATA(13,17) = RBG2(3)

MATA(13,18) = -RBG2(2)
IN THE Y DIRECTION
        MATA(14,5) = -1.0D0

MATA(14,7) = RAG1(3)

MATA(14,9) = -RAG1(1)

MATA(14,14) = 1.0D0

MATA(14,16) = -RBG2(3)

MATA(14,18) = RBG2(1)
IN THE Z DIRECTION
        MATA(15,6) = MATA(15,7) = MATA(15,8) = MATA(15,15) = MATA(15,16) =
                                   = -1.000
                                    = -RAG1(2)
= RAG1(1)
                                           1.0DÒ
                                           RBG2(2)
```

```
MATA(15,17) = -RBG2(1)
SUM OF MOMENTS EQUATIONS FOR LINK TWO IN THE X.Y.Z DIRECTIONS
         MATA(16,11) = RBG2(3)

MATA(16,12) = -RBG2(2)

MATA(16,16) = -IXXT(2)

MATA(16,17) = IXYT(2)

MATA(16,18) = IXZT(2)

MATA(16,20) = -RAG2(3)

MATA(16,21) = RAG2(2)
         MATA(17,10) = -RBG2(3)

MATA(17,12) = RBG2(1)

MATA(17,16) = IXYT(2)

MATA(17,17) = -IYYT(2)

MATA(17,18) = IYZT(2)

MATA(17,19) = RAG2(3)

MATA(17,21) = -RAG2(1)
        MATA(18,10) = RBG2(2)
MATA(18,11) = -RBG2(1)
MATA(18,16) = IXZT(2) + IXZT(3)
MATA(18,17) = IYZT(2) + IYZT(3)
MATA(18,18) = -IZZT(2) - IZZT(3)
MATA(18,19) = -RAG2(2)
MATA(18,20) = RAG2(1)
LINK THREE
SUM OF FORCES IN THE X DIRECTION
         MATA(19,19) = 1.0D0
MATA(19,22) = MASS3
SUM OF FORCES IN THE Y DIRECTION
         !IATA(20,20) = 1.0D0
MATA(20,23) = MASS3
SUM OF FORCES IN THE Z DIRECTION
         MATA(21,21) = 1.0D0

MATA(21,24) = MASS3
EQUATIONS AT JOINT TWO
IN THE X DIRECTION
        MATA(22,13) = -1.0D0

MATA(22,17) = -RAG2(3)

MATA(22,18) = RAG2(2)

MATA(22,22) = 1.0D0

MATA(22,26) = RBG3(3)

MATA(22,27) = -RBG3(2)
IN THE Y DIRECTION
        MATA(23,14) = -1.0D0

MATA(23,16) = RAG2(3)

MATA(23,18) = -RAG2(1)

MATA(23,23) = 1.0D0

MATA(23,25) = -RBG3(3)

MATA(23,27) = RBG3(1)
IN THE Z DIRECTION
        MATA(24,15) = -1.0D0

MATA(24,16) = -RAG2(2)

MATA(24,17) = RAG2(1)

MATA(24,24) = 1.0D0

MATA(24,25) = RBG3(2)

MATA(24,26) = -RBG3(1)
SUM OF MOMENTS EQUATIONS FOR LINK THREE IN THE X,Y,Z DIRECTIONS
         MATA(25,20) = RBG3(3)
MATA(25,21) = -RBG3(2)
MATA(25,25) = -IXXT(3)
```

```
MATA(25,26) =
MATA(25,27) =
                   MATA(26,19) = -RBG3(3)

MATA(26,21) = RBG3(1)

MATA(26,25) = IXYT(3)

MATA(26,26) = -IYYT(3)

MATA(26,27) = IYZT(3)
                   MATA(27,19) = RBG3(2)

MATA(27,20) = -RBG3(1)

MATA(27,25) = IXZT(3)

MATA(27,26) = IYZT(3)

MATA(27,27) = -IZZT(3)
                 GO TO 1112
             INITIALIZE MATRIX ACCORDING TO CONSTRAINT
             CONSTRAINTS GROUP 1 WHEN ONLY LINK THREE IS IN MOTION
                DO 118 I = 1,18

DO 18 J = 1,27

MATA(I,J) = 0.0

MATA(I,I) = 1.0

MATB(I) = 0.0
*
*18
                    CONTINÚE
*118
                CONTINUE
                DO 181 I = 19,27

DO 81 J = 1,18

MATA(I,J) = 0.0
*
*81
                    CONTINUE
*181
                      CONTINUE
              GO TO 1111
*
             CONSTRAINTS GROUP 2 WHEN LINK TWO AND THREE ARE IN MOTION
                DO 19 I = 1,9

DO 191 J = 1,27

MATA(I,J) = 0.0D0

MATA(I,I) = 1.0 D0

MATB(I) = 0.0D0
                       MATA(17,J) = 0.0D0
MATA(18,J) = 0.0D0
MATB(17) = 0.0D0
MATB(18) = 0.D0
                       MATA(J,17) = 0.0D0
MATA(J,18) = 0.0D0
                        MATA(17,17) = 1.0D0

MATA(18,18) = 1.0D0
*
÷
*191
                    CONTINUE
*ì9
                CONTINUE
                DO 91 I = 10,27

DO 92 J = 1,9

MATA(I,J) = 0.0
*
÷
                    CONTINUE
*92
*91
                 CONTINUE
×
                 GO TO 1111
×
              CONSTRAINTS GROUP 3 WHEN THREE OF THE LINKS ARE IN MOTION
                DO 78 J = 1,27
                    MATA(7,J)
MATA(8,J)
MATA(J,7)
MATA(J,8)
MATB(7)
                                        = 0.000
                                        = 0.000
                                        = 0.000
                                       = 0.000
                                        = 0.000
                    MATB(8)
                                        = 0.000
```

```
MATA(17,J) = 0.0D0
                   MATA(18,J) = 0.0DU

MATA(J,17) = 0.0DO

MATA(J,18) = 0.0DO

MATB(17) = 0.0DO

MATB(18) = 0.0DO
×
                   MATA(26,J) = 0.0D0
MATA(27,J) = 0.0D0
MATA(J,26) = 0.0D0
MATA(J,27) = 0.0D0
MATB(26) = 0.0D0
                   MATB(27)
                                      = 0.000
                   MATA(7,7) = 1.0D0

MATA(8,8) = 1.0D0

MATA(17,17) = 1.0D0

MATA(18,18) = 1.0D0

MATA(26,26) = 1.0D0

MATA(27,27) = 1.0D0
*78
                 CONTINUE
      CONSTRAINT GROUP 4 THE FIRST LINK IS CONSTRAINED TO ROTATE IN Z DIR.
               DO 48 I = 4,8

DO 481 J = 1,27

MATA(I,J) = 0.0D0

MATA(I,I) = 1.0 D0

MATB(I) = 0.0D0
 1112
  481
                CONTINUE
  48
                CONTINUE
                  DO 84 I = 9,27
DO 841 J = 4,8
MATA(I,J) = 0.0
                   CONTINUE
 841
                CONTINUE
      USE THE FOLLOWING SET OF INFORMATION WHEN THE ANGULAR VELOCITY IS
       IN X DIRECTION REGARDLESS OF THE INITIAL CONFIGURATION
      ENTER THE THEORITICAL VALUES ASSUMING THE LINK TWO AND THREE ARE IN PLANAR MOTION AND ANGULAR VELOCITY IS IN THE X DIRECTION
*
            LINK TWO
            THEORITICAL ANGULAR VELOCITIES (APPLIED IN THE X DIRECTION)
                  MATB(18) = 0.0D0
MATB(17) = 0.0D0
MATB(16) = -((PI**3) / 8.0D0) * DSIN(W * TIME)
                   THDDOT
                                  = MATB(16)
                                 = INTGRL((PI**2)/4.,THDDOT)
= INTGRL(0.,THTDOT)
= THETRB * RADEG
                   THTDOT
                   THETRE
                   THETAB
            LINEAR VELOCITIES
                  MATB(15) = -(THDDOT * RBG2(2)) + (THTDOT ** 2) * RBG2(3)
MATB(14) = (THDDOT * RBG2(3)) + (THTDOT ** 2) * RBG2(2)
MATB(13) = 0.0D0
            LINK THREE ANGULAR VELOCITIES
                  MATB(27) = 0.0D0
MATB(26) = 0.0D0
MATB(25) = 0.0D0
            LINEAR VELOCITIES
                  MATB(24) = MATB(15)+(THDDOT*RAG2(2))-(THTDOT**2)*(RAG2(3))
MATB(23) = MATB(14)-(THDDOT*RAG2(3))-(THTDOT**2)*(RAG2(2))
MATB(22) = MATB(13)
      END OF THE INFORMATION FOR X DIRECTION
```

```
USE THE FOLLOWING SET OF INFORMATION WHEN THE ANGULAR VELOCITY IS
       IN THE Y DIRECTION REGARDLESS OF THE INITIAL CONFIGURATION
      ENTER THE THEORITICAL VALUES ASSUMING THE LINK TWO AND THREE ARE IN PLANAR MOTION AND ANGULAR VELOCITY IS IN THE Y DIRECTION
      LINK TWO
       THEORITICAL ANGULAR VELOCITIES (APPLIED IN THE Y DIRECTION )
               MATB(18) = MATB(17) = MATB(16) =
                                   0.0D0
                                   ((-Pi**3)/8)*SIN(W*TIME)
0.0D0
                             = MATB(17)
= INTGRL((PI**2)/4.,THDDOT)
= INTGRL(0,INTGRL(PI**2/4.,THDDOT))
= THETRB * RADEG
               THDDÒT
               THTDOT
               THETRB
               THETAB
      LINEAR VELOCITIES
              MATB(15) = (THDDOT * RBG2(1)) + (THTDOT ** 2) * RBG2(3)
MATB(14) = 0.0D0
MATB(13) = -(THDDOT * RBG2(3)) + (THTDOT ** 2) * RBG2(1)
      LINK THREE
      ANGULAR VELOCITIES
              MATB(27) = 0.0D0
MATB(26) = 0.0D0
MATB(25) = 0.0D0
      LINEAR VELOCITIES
              MATB(24) = MATB(15)-(THDDOT*RAG2(1))-(THTDOT**2)*(RAG2(3))
MATB(23) = MATB(14)
MATB(22) = MATB(13)+(THDDOT*RAG2(3))-(THTDOT**2)*(RAG2(1))
    END OF THE INFORMATION FOR THE Y DIRECTION
      USE THE FOLLOWING SET OF INFORMATION WHEN THE ANGULAR VELOCITY IS IN THE Z DIRECTION REGARDLESS OF THE INITIAL CONFIGURATION
      ENTER THE THEORITICAL VALUES ASSUMING THE LINK TWO AND THREE ARE IN PLANAR MOTION AND ANGULAR VELOCITY IS IN THE Z DIRECTION
      LINK TWO
      THEORITICAL ANGULAR VELOCITIES (APPLIED IN THE Z DIRECTION )
               MATB(16) = 0.0D0
MATB(17) = 0.0D0
               MATB(18) = -((PI**3) / 8.0D0) * DSIN(W * TIME)
THDDOT = MATB(18)
THTDOT = INTGRL((PI**2)/4.,THDDOT)
THETRB = INTGRL(0.,THTDOT)
THETAB = THETRB * RADEG
      LINEAR VELOCITIES
              MATB(14) = -(THDDOT * RBG2(1)) + (THTDOT ** 2) * RBG2(2)
MATB(13) = (THDDOT * RBG2(2)) + (THTDOT ** 2) * RBG2(1)
MATB(15) = 0.0D0
      LINK THREE
      ANGULAR VELOCITIES
              MATB(27) = 0.0D0
MATB(26) = 0.0D0
MATB(25) = 0.0D0
*
*
      LINEAR VELOCITIES
              MATB(24) = MATB(15)

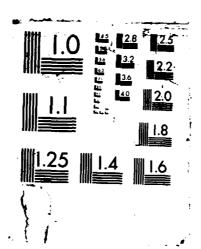
MATB(23) = MATB(14)+(THDDOT*RAG2(1))-(THTDOT**2)*(RAG2(2))

MATB(22) = MATB(13)-(THDDOT*RAG2(2))-(THTDOT**2)*(RAG2(1))
      END OF THE INFORMATION FOR THE Z DIRECTION
      NEXT SET OF STATEMENTS ARE COMMON IN ANY PLANAR MOTION AND THEY ARE IN YHE CODE IN EVERY CASE. THESE TERMS ARE ACCELERATION OF THE LINK
```

```
ONE AND FORCES AT EACH JOINT
    LINK ONE LINEAR AND ANGULAR ACCELERATIONS
                 MATB(4) = 0.0D0
MATB(5) = 0.0D0
MATB(6) = 0.0D0
MATB(7) = 0.0D0
MATB(8) = 0.0D0
MATB(9) = 0.0D0
     FORCES
      JOINT TWO
                 MATB(21) = -MASS3 * MATB(24) - WG3
MATB(20) = -MASS3 * MATB(23)
MATB(19) = -MASS3 * MATB(22)
           JOINT ONE
                 MATB(12) = MATB(21) - MASS2 * MATB(15) -WG2
MATB(11) = MATB(20) - MASS2 * MATB(14)
MATB(10) = MATB(19) - MASS2 * MATB(13)
           JOINT ZERO
                 MATB(3) = MATB(12) - MASS1 * MATB(6) -WG1
MATB(2) = MATB(11) - MASS1 * MATB(5)
MATB(1) = MATB(10) - MASS1 * MATB(4)
      END OF THE INFORMATION
      MULTIPLY MATA AND MATB
           DO 505 J = 1,27
                 SUM1 = 0.0

DO 555 K = 1,27

SUM1 = SUM1 + MATA(J,K) * MATB(K)
555
           DQ(J) = SUM1
CONTINUE
505
             DO 506 I =1,27
MATC(I) = DQ(I)
 506
           CONTINUE
           CALL EQUATION SOLVER PROGRAM FROM IMSL
             CALL LEQT2F(MATA, M, N, IA, DQ, IDGT, WKAREA, IER)
           IF (IER .NE. 0) CALL ENDJOB
           FIND LCOGX, LCOGY, LCOGZ, THETA VALUES, WX, WY, WZ
           LINK ONE
                                = DQ(4)
= INTGRL(0.,AX1)
= INTGRL(X1,VELX1)
= LCOGX1
                 AX1
                 VELX1
LCOGX1
                 LCOGX(1)
                                 = DQ(5)
= INTGRL(0.,AY1)
= INTGRL(Y1,VELY1)
                 AY1
                 VELY1
                 LCOGY1
                 LCOGY(1)
                                 = LCOGY1
                                 = DQ(6)
= INTGRL(0.,AZ1)
= INTGRL(Z1,VELZ1)
                 AZ1
                 VELZ1
LCOGZ1
                 LCOGZ(1)
                                 = LCOGZ1
                                 = DQ(7)
= INTGRL(0.,WD1X)
                 WD1X
                 WIX
WDX(1)
                                 = WD1X
                 W1(1)
                                 = DQ(8)
= INTGRL(0.,WD1Y)
= WD1Y
                 WD1Y
                 WIY
                 WDY(1)
W1(2)
                                 = W1Y
```


```
= DQ(9)
= INTGRL(0.,WD1Z)
= WD1Z
             WD1Z
             W1Z
WDZ(1)
                           = W1Z
              W1(3)
      TRANSFORMATION MATRIX FROM EARTH FIXED TO BODY FIXED COORDINATE SYSTEM FOR THE LINK ONE
              MATIR(1,1) = DCOS(RLRZ1) * DCOS(PTRY1)
              MATIR(2,1) = DCOS(RLRZ1) * DSIN(PTRY1) * DSIN(YWRX1) - ...
              DSIN(RLRZ1) * DCOS(YWRX1)
             MAT1R(3,1) = DCOS(RLRZ1) * DSIN(PTRY1) * DCOS(YWRX1) +...
DSIN(RLRZ1) * DSIN(YWRX1)
             MATIR(1,2) = DSIN(RLRZ1) * DCOS(PTRY1)
              MATIR(2,2) = DSIN(RLRZ1) * DSIN(PTRY1) * DSIN(YWRX1) +...
             DCOS(RLRZ1) * DCOS(YWRX1)
             MATIR(3,2) = DSIN(RLRZ1) * DSIN(PTRY1) * DCOS(YWRX1) -...
DCOS(RLRZ1) * DSIN(YWRX1)
             MATIR(1,3) = -DSIN(PTRY1)
             MATIR(2,3) = DCOS(PTRY1) * DSIN(YWRX1)
             MATIR(3,3) = DCOS(PTRY1) * DCOS(YWRX1)
        GET THE VELOCITIES FOR LINK 1 IN BODY FIXED COOR. SYSTEM
             DO 605 J = 1.3
SUM1 = 0.0D0
                    DO 606 K = 1,3
SUM1 = SUM1 + MATIR(J,K) * W1(K)
                 CONTINUE
606
                 BRATE1(J) = SUM1
605
           CONTINUE
        TRANSFORMATION MATRIX FROM BODY FIXED TO EULER COORDINATE
        SYSTEM FOR THE LINK ONE
             MATIT(1,1) = 0.0D0
MATIT(2,1) = 1.0D0
MATIT(3,1) = 0.0D0
             \begin{array}{lll} \text{MATIT(1,2)} &=& \text{DCOS(YWRX1)} \\ \text{MATIT(2,2)} &=& \text{DTAN(PTRY1)} & \star & \text{DSIN(YWRX1)} \\ \text{MATIT(3,2)} &=& 1.0 \text{DOO/DCOS(PTRY1)} & \star & \text{DSIN(YWRX1)} \end{array}
             MATIT(1,3) = -DSIN(YWRX1)
MATIT(2,3) = DTAN(PTRY1) * DCOS(YWRX1)
MATIT(3,3) = 1.DO/DCOS(PTRY1) * DCOS(YWRX1)
         GET THE YAW, PITCH AND THE ROLL RATES FOR LINK ONE
              DO 705 J = 1.3
                 SUM1 = 0.0D0
                    DO 706 K = 1,3
                        SUM1 = SUM1 + MATIT(J,K) * BRATEL F
                 CONTINUE
706
                 RATE1(J) = SUM1
705
           CONTINUE
             RATELY = RATEL(1)
RATELY = RATEL(2)
              RATEIZ = RATEI(3)
             YWRX1 = INTGRL () FATE()
PTRY1 = INTGRL () FATE()
RIRZ1 = INTGRL () FATE()
             YAWANKOI = YAFOI 1 1 A PTOANY 1 = PTE-1 1 1 A PELANZ . = PTE-1 1 1 A
          DIPETTI N
                             **: :
```

AD-A189 787 A THREE DIMENSIONAL NON-SINGULAR MODELLING OF RIGID MANIPULATORS (1) NAUAL POSTGRADUATE SCHOOL MONTEREY CA S ALTIMOK DEC 87

2/2

NL ND

END DATE 488


```
DRCSX(1) = DSIN(RLRZ1) * DSIN(PTRY1) * DCOS(YWRX1) -...
DCOS(RLRZ1) * DSIN(YWRX1)
              DRCSZ(1) = DCOS(PTRY1) * DCOS(YWRX1)
         GET THE ANGLES AS RADIANS
              DRCRAX(1) = DACOS(DRCSX(1))
DRCRAY(1) = DACOS(DRCSY(1))
DRCRAZ(1) = DACOS(DRCSZ(1))
         CONVERT THE DIRECTION COSINES TO DEGREES
              DRCANX(1) = DACOS(DRCSX(1)) * RADEG
DRCANY(1) = DACOS(DRCSY(1)) * RADEG
DRCANZ(1) = DACOS(DRCSZ(1)) * RADEG
          LINK TWO
                         = DQ(13)
= INTGRL(0.,AX2)
= INTGRL(X2,VELX2)
9
            AX2
              VELX2
              LCOGX2
              LCOGX(2)
                          = LCOGX2
                           = DO(14)
= INTGRL(0.,AY2)
= INTGRL(Y2,VELY2)
              AY2
              VELY2
              LCOGY2
              LCOGY(2)
                           = LCOGY2
                           = DQ(15)
= INTGRL(0.,AZ2)
= INTGRL(Z2,VELZ2)
              AZ2
              VELZ2
              LCOGZ2
              LCOGZ(2)
                          = LCOGZ2
         WD2X = DQ(16)
W2X = INTGRL((PI**2)/4.,WD2X)
USE THE INIT. COND. WITH ONLY WHICHEVER VELOCITY APPLIED
AND KEEP THE TWO OTHER ANG. VEL. INIT. COND. AS ZERO
         USE THE NEXT STATEMENT IF THE ANGULAR VELOCITY IS IN THE X DIR.
                           = INTGRL(0., W2X)
              WDX(2)
W2(1)
                           = WD2X
                           = W2X
                           = DO(17)
= INTGRL(0.,WD2Y)
              WD2Y
         USE THE NEXT STATEMENT IF THE ANGULAR VELOCITY IS IN THE Y DIR.
             THETRD
                          = INTGRL(0., W2Y)
              WDY(2)
W2(2)
                           = WD2Y
                           = W2Y
              WD2Z
                           = IÑTGRĹ(0.,WD2Z)
         USE THE NEXT STATEMENT IF THE ANGULAR VELOCITY IS IN THE Z DIR.
           THETRD
                         = INTGRL(0.,W2Z)
              WDZ(2)
W2(3)
                           = WD2Z
                           = W2Z
                        = THETRD * RADEG
              THETAD
                         = ABS(((THETAD-THETAB)/180.) * 100)
         TRANSFORMATION MATRIX FROM EARTH FIXED TO BODY FIXED COORDINATE SYSTEM FOR THE LINK TWO
              MAT2R(1,1) = DCOS(RLRZ2) * DCOS(PTRY2)
              MAT2R(2,1) = DCOS(RLRZ2) * DSIN(PTRY2) * DSIN(YWRX2) - ...
              DSIN(RLRZ2) * DCOS(YWRX2)
              MAT2R(3,1) = DCOS(RLRZ2) * DSIN(PTRY2) * DCOS(YWRX2) +...
DSIN(RLRZ2) * DSIN(YWRX2)
              MAT2R(1,2) = DSIN(RLRZ2) * DCOS(PTRY2)
              MAT2R(2,2) = DSIN(RLRZ2) * DSIN(PTRY2) * DSIN(YWRX2) +...
```

```
DCOS(RLRZ2) * DCOS(YWRX2)
              MAT2R(3,2) = DSIN(RLRZ2) * DSIN(PTRY2) * DCOS(YWRX2) - ...
              DCOS(RLRZ2) * DSIN(YWRX2)
              MAT2R(1,3) = -DSIN(PTRY2)
              MAT2R(2,3) = DCOS(PTRY2) * DSIN(YWRX2)
              MAT2R(3,3) = DCOS(PTRY2) * DCOS(YWRX2)
        GET THE VELOCITIES FOR LINK 2 IN BODY FIXED COOR. SYSTEM
              DO 607 J = 1,3
SUM1 = 0.0D0
DO 608 K = 1
                        SUM1 = SUM1 + MAT2R(J,K) * W2(K)
                 CONTINUE
608
                 BRATE2(J) = SUM1
607
            CONTINUE
        TRANSFORMATION MATRIX FROM BODY FIXED TO EULER COOR. SYSTEM
        FOR THE LINK TWO
             MAT2T(1,1) = 0.0D0
MAT2T(2,1) = 1.0D0
MAT2T(3,1) = 0.0D0
             MAT2T(1,2) = DCOS(YWRX2)
MAT2T(2,2) = DTAN(PTRY2) * DSIN(YWRX2)
MAT2T(3,2) = 1.0D0/DCOS(PTRY2) * DSIN(YWRX2)
             MAT2T(1,3) = -DSIN(YWRX2)
MAT2T(2,3) = DTAN(PTRY2) * DCOS(YWRX2)
MAT2T(3,3) = 1.0D0/DCOS(PTRY2) * DCOS(YWRX2)
        GET THE YAW, PITCH AND THE ROLL RATES FOR LINK TWO
              DO 707 J = 1,3
SUM1 = 0.0D0
DO 708 K = 1,3
                        SUM1 = SUM1 + MAT2T(J,K) * BRATE2(K)
708
                 CONTINUE
                 RATE2(J) = SUM1
707
            CONTINUE
              RATE2X = RATE2(1)
RATE2Y = RATE2(2)
RATE2Z = RATE2(3)
        USE THE NEXT THREE STATEMENTS FOR CASE A
              YWRX2 = INTGRL(0.,RATE2X)
PTRY2 = INTGRL(0.,RATE2Y)
RLRZ2 = INTGRL(-PI/2.,RATE2Z)
        USE THE NEXT THREE STATEMENTS FOR CASE B
           YWRX2 = INTGRL(0.,RATE2X)
PTRY2 = INTGRL(0.,RATE2Y)
RLRZ2 = INTGRL(PI/2.,RATE2Z)
        USE THE NEXT THREE STATEMENTS FOR CASE C
           YWRX2 = INTGRL(0., RATE2X)
PTRY2 = INTGRL(0., RATE2Y)
RLRZ2 = INTGRL(0., RATE2Z)
              RATE2(1) = RATE2X
RATE2(2) = RATE2Y
RATE2(3) = RATE2Z
              YAWANX(2) = YWRX2 * RADEG
PTCANY(2) = PTRY2 * RADEG
ROLANZ(2) = RLRZ2 * RADEG
        USE THE NEXT SET OF THE DIRECTION COSINES FOR LINK TWO FOR CASE A
              DRCSY(2) = DCOS(RLRZ2) * DSIN(PTRY2) * DSIN(YWRX2) -...
DSIN(RLRZ2) * DCOS(YWRX2)
              DRCSX(2) = DSIN(RLRZ2) * DSIN(PTRY2) * DSIN(YWRX2) + ...
```

```
DCOS(RLRZ2) * DCOS(YWRX2)
              DRCSZ(2) = DCOS(PTRY2) * DSIN(YWRX2)
         USE THE NEXT SET OF THE DIRECTION COSINES FOR LINK TWO FOR CASE B
           DRCSY(2) = DCOS(RLRZ2) * DCOS(PTRY2)
           DRCSX(2) = DSIN(RLRZ2)*DCOS(PTRY2)
           DRCSZ(2) = -DSIN(PTRY2)
         USE THE NEXT SET OF THE DIRECTION COSINES FOR LINK TWO FOR CASE C
           DRCSY(2) = DCOS(RLRZ2) * DSIN(PTRY2) * DCOS(YWRX2) +...
DSIN(RLRZ2) * DSIN(YWRX2)
           DRCSX(2) = DSIN(RLRZ2) * DSIN(PTRY2) * DCOS(YWRX2) -...
DCOS(RLRZ2) * DSIN(YWRX2)
×
           DRCSZ(2) = DCOS(PTRY2) * DCOS(YWRX2)
         GET THE ANGLES AS RADIANS
              DRCRAX(2) = DACOS(DRCSX(2))
DRCRAY(2) = DACOS(DRCSY(2))
DRCRAZ(2) = DACOS(DRCSZ(2))
         CONVERT THE DIRECTION COSINES TO DEGREES
              DRCANX(2) = DACOS(DRCSX(2)) * RADEG
DRCANY(2) = DACOS(DRCSY(2)) * RADEG
DRCANZ(2) = DACOS(DRCSZ(2)) * RADEG
         FIND THE JOINT LOCATION
                         (L(1,1) + L(1,2)) * DCOS(DRCRAX(1))
(L(1,1) + L(1,2)) * DCOS(DRCRAY(1))
(L(1,1) + L(1,2)) * DCOS(DRCRAZ(1))
              JY1
         LINK THREE
                        = DQ(22)
= INTGRL(0.,AX3)
= INTGRL(X3,VELX3)
6
           AX3
              VELX3
              LCOGX3
              LCOGX(3)
                          = LCOGX3
                           = DO(23)
= INTGRL(0.,AY3)
= INTGRL(Y3,VELY3)
              AY3
              VELY3
              LCOGY3
              LCOGY(3)
                           = LCOGY3
              AZ3
                           = DO(24)
                           = INTGRL(0.,AZ3)
= INTGRL(Z3,VELZ3)
              VELZ3
              LCOGZ3
              LCOGZ(3)
                           = LCOGZ3
              WD3X
                           = DQ(25)
= INTGRL(0.,WD3X)
              W3X
              WDX(3)
W3(1)
                           = WD3X
                           = W3X
                           = DQ(26)
= INTGRL(0.,WD3Y)
= WD3Y
              WD3Y
              W3Y
              WDY(3)
W3(2)
                           = W3Y
              WD3Z
                           = DQ(27)
= INTGRL(0.,WD3Z)
              W3Z
              WDZ(3)
W3(3)
                           = WD3Z
         TRANSFORMATION MATRIX FROM EARTH FIXED TO BODY FIXED COOR. SYSTEM
         FOR THE LINK THREE
              MAT3R(1,1) = DCOS(RLR23) * DCOS(PTRY3)
              MAT3R(2,1) = DCOS(RLRZ3) * DSIN(PTRY3) * DSIN(YWRX3) - ...
              DSIN(RLRZ3) * DCOS(YWRX3)
              MAT3R(3,1) = DCOS(RLRZ3) * DSIN(PTRY3) * DCOS(YWRX3) + ...
```

```
DSIN(RLRZ3) * DSIN(YWRX3)
             MAT3R(1,2) = DSIN(RLRZ3) * DCOS(PTRY3)
             MAT3R(2,2) = DSIN(RLRZ3) * DSIN(PTRY3) * DSIN(YWRX3) +...
DCOS(RLRZ3) * DCOS(YWRX3)
             MAT3R(3,2) = DSIN(RLRZ3) * DSIN(PTRY3) * DCOS(YWRX3) -...
DCOS(RLRZ3) * DSIN(YWRX3)
             MAT3R(1,3) = -DSIN(PTRY3)
             MAT3R(2,3) = DCOS(PTRY3) * DSIN(YWRX3)
             MAT3R(3.3) = DCOS(PTRY3) * DCOS(YWRX3)
        GET THE VELOCITIES FOR LINK 3 IN BODY FIXED COOR. SYSTEM
             DO 609 J = 1,3
                SUM1 = 0.000
                   DO 610 K = 1,3
                       SUM1 = SUM1 + MAT3R(J,K) * W3(K)
610
                CONTINUE
                BRATE3(J) = SUM1
609
           CONTINUE
        TRANSFORMATION MATRIX FROM BODY FIXED TO EULER COOR. SYSTEM
        FOR THE LINK THREE
             MAT3T(1,1) = 0.0D0
             MAT3T(2,1) = 1.0D0
MAT3T(3,1) = 0.0D0
             MAT3T(1,2) =
MAT3T(2,2) =
MAT3T(3,2) =
                              DCOS(YWRX3)
DTAN(PTRY3) * DSIN(YWRX3)
1.0D0/DCOS(PTRY3) * DSIN(YWRX3)
             MAT3T(1,3) = -DSIN(YWRX3)
MAT3T(2,3) = DTAN(PTRY3) * DCOS(YWRX3)
MAT3T(3,3) = 1.0D0/DCOS(PTRY3) * DCOS(YWRX3)
      GET THE YAW, PITCH AND THE ROLL RATES FOR LINK THREE
             DO 709 J = 1.3
SUM1 = 0.0D0
                   DO 710 K = 1,3
                       SUM1 = SUM1 + MAT3T(J,K) * BRATE3(K)
710
                CONTINUE
                RATE3(J) = SUM1
709
           CONTINUE
             RATE3X = RATE3(1)
RATE3Y = RATE3(2)
             RATE3Z = RATE3(3)
       USE THE NEXT THREE FOR THE CASE A
             YWRX3 = INTGRL(0.,RATE3X)
PTRY3 = INTGRL(0.,RATE3Y)
RLRZ3 = INTGRL(-PI/2.,RATE3Z)
        USE THE NEXT THREE FOR THE CASE B
          YWRX3 = INTGRL(0.,RATE3X)
          PTRY3 = INTGRL(0., RATE3Y)
RLRZ3 = INTGRL(PI/2., RATE3Z)
        USE THE NEXT THREE FOR THE CASE C
          YWRX3 = INTGRL(0.,RATE3X)
PTRY3 = INTGRL(0.,RATE3Y)
RLRZ3 = INTGRL(0.,RATE3Z)
             YAWANX(3) = YWRX3 * RADEG
PTCANY(3) = PTRY3 * RADEG
ROLANZ(3) = RLRZ3 * RADEG
     USE THE NEXT SET OF THE DIRECTION COSINES FOR LINK THREE FOR CASE A
             DRCSY(3) = DCOS(RLRZ3) * DSIN(PTRY3) * DSIN(YWRX3) -...
DSIN(RLRZ3) * DCOS(YWRX3)
```

```
DRCSX(3) = DSIN(RLRZ3) * DSIN(PTRY3) * DSIN(YWRX3)+...
                 DCOS(RLRZ3) * DCOS(YWRX3)
                 DRCSZ(3) = DCOS(PTRY3) * DSIN(YWRX3)
      USE THE NEXT SET OF THE DIRECTION COSINES FOR LINK THREE FOR CASE B
              DRCSY(3) = DCOS(RLRZ3) * DCOS(PTRY3)
              DRCSX(3) = DSIN(RLRZ3)*DCOS(PTRY3)
              DRCSZ(3) = -DSIN(PTRY3)
      USE THE NEXT SET OF THE DIRECTION COSINES FOR LINK THREE FOR CASE C
              DRCSY(3) = DCOS(RLRZ3) * DSIN(PTRY3) * DCOS(YWRX3)+...
DSIN(RLRZ3) * DSIN(YWRX3)
              DRCSX(3) = DSIN(RLRZ3) * DSIN(PTRY3) * DCOS(YWRX3)-...
DCOS(RLRZ3) * DSIN(YWRX3)
              DRCSZ(3) = DCOS(PTRY3) * DCOS(YWRX3)
           GET THE ANGLES AS RADIANS
                 DRCRAY(3) = DACOS(DRCSY(3))
DRCRAY(3) = DACOS(DRCSY(3))
DRCRAZ(3) = DACOS(DRCSZ(3))
           CONVERT THE DIRECTION COSINES TO DEGREES
                 DRCANX(3) = DACOS(DRCSX(3)) * RADEG
DRCANY(3) = DACOS(DRCSY(3)) * RADEG
DRCANZ(3) = DACOS(DRCSZ(3)) * RADEG
           FIND ANGLE BETWEEN LINK 2 AND LINK 3 TO CHECK IF THE ARM LINKS are PASSING THROUGH THE SINGULAR POINTS
                 ANG23X = DRCANX(2) - DRCANX(3)
ANG23Y = DRCANY(2) - DRCANY(3)
ANG23Z = DRCANZ(2) - DRCANZ(3)
                 ANG12X = DRCANX(1) - DRCANX(2)
ANG12Y = DRCANY(1) - DRCANY(2)
ANG12Z = DRCANZ(1) - DRCANZ(2)
           FIND THE JOINT LOCATION
                                     (L(2,1) + L(2,2)) * DCOS(DRCRAX(2))
(L(2,1) + L(2,2)) * DCOS(DRCRAY(2))
(L(2,1) + L(2,2)) * DCOS(DRCRAZ(2))
                 TIPX = JX2 + (L(3,1) + L(3,2)) * DCOS(DRCRAX(3))
TIPY = JY2 + (L(3,1) + L(3,2)) * DCOS(DRCRAY(3))
TIPZ = JZ2 + (L(3,1) + L(3,2)) * DCOS(DRCRAZ(3))
END
STOP
FORTRAN
          SUBROUTINE TO COMPUTE THE CROSS PRODUCT OF TWO VECTORS
                  SUBROUTINE CPROD(VECTA, VECTB, MI, MJ, MK)
IMPLICIT REAL*8 (A-Z)
                          IMPLICIT REAL*8 (A-Z)
DIMENSION VECTA(3), VECTB(3)
MI = VECTA(2) * VECTB(3) - VECTA(3) * VECTB(2)
MJ = VECTA(3) * VECTB(1) - VECTA(1) * VECTB(3)
MK = VECTA(1) * VECTB(2) - VECTA(2) * VECTB(1)
                    RETURN
                    END
```

LIST OF REFERENCES

- 1. Fu, K. S., Gonzales, R. C., Lee, C. S. G., <u>Robotics:</u>

 <u>Control. Sensing. Vision. and Intelligence</u>, pp. preface

 9, McGraw-Hill Book Co., 1987.
- 2. Fu, K. S., Gonzales, R. C., Lee, C. S. G., Robotics:

 Cortrol. Sensing. Vision. and Intelligence, pp. 36-41,
 L.Graw-Hill Book Co., 1987.
- 3. Craig, J. J., <u>Introduction to Robotic Mechanism and Control</u>, pp. 146-149, Addison-Wesley Co., 1986.
- 4. Walker, M. W., and Orin, D. E., "Efficient Dynamic Computer Simulation of Robot Mechanism," ASME J. of Dynamics Systems, Measurements and Control Vol. 104, pp. 205-211.
- 5. Luh, J. Y. S., Walker, M.W., and Paul, R. P. C., "On-line Computational Scheme for Mechanical Manipulators," ASME J. of Dynamic Systems, Measurements and Control Vol. 102, pp. 69-76, June 1980.
- 6. Hollerbach, J. M., "A Recursive Langrangian Formulation of Manipulative Dynamics and a Comperative Study of Dynamics Formulation Complexity," IEEE Trans. SYST Man. and Cybern. Vol. SMC10 No. 11, pp. 730-736, 1980.
- 7. Paul. R., "The Mathematics of Computer Controlled Manipulators," Proceedings Joint Control Conference Vol. I, pp. 124-131, 1977.

- 8. Williams, R. J., and Seireg, A., "Interactive Modelling and Analysis of Open and Close Loop Dynamics System with Redundant Actuators," ASME J. of Mechanical Design Vol. 101 No. 3, pp. 407-416, July 1979.
- 9. Kane, T., and Levinson, D. A., "The Use of Kane's Dynamical Equations in Robotics," International J. of Robotics Research Vol. 2 No. 3, pp. 3-21, Fall 1983.
- 10. McCarthy, W. F., "Simulation of High Speed Motion of Rigid Revolute Mechanism," M. S. Thesis, Naval Postgraduate School, Monterey, California, December 1985.
- 11. Paul, R. P., and Stevenson, C. N., "Kinematics of Robot Wrists," International J. of Robotics Research Vol. 2
 No. 1, pp. 31-38, Spring 1983.
- 12. Barker, K. L., "Kinematic Equations for Resolved Rate Control of an Industrial Robot Arm," NASA Technical Memo., 85685, pp. 1-35, November 1983.
- 13. Barker, K. L., Houck, J. A., and Carzoo, S. W.,

 "Translational Control of a Graphicially Simulated
 Robot Arm by Kinematic Rate Equations that Overcome
 Joint Elbow Singularity," NASA Tech. Paper, 2376,

 December 1984.
- 14. Waldron, K. J., Wang, S., and Bolin, S. J., "A Study of the Jacobian Matrix of Serial Manipulators," ASME Design Engineering Technical Conference, Cambridge, Massachusetts, October 7-10, 1984.

- 15. Yoshikowa, T., "Analysis and Control of Robot Manipulators with Redundancy," in Robotics Research First International Symposium, ed. M. Brady and R. Paul, Cambridge, Massachusetts, pp. 735-748, 1984.
- 16. Hollerbach, J. M., "Optimum Kinematics Design for a Seven Degree of Freedom Manipulator," 2nd International Symposium of Robotics Research, Kyoto, Japan, pp. 349-356 August 20-23, 1984.
- 17. Luh, J. Y. S., and Gu, Y. L., "Industrial Robots with Seven Joints," IEEE International Conference on Robotics and Automation, pp. 1010-1015, March 25-28, 1985.
- 18. Khayyam, M., "Non-Singular Modelling of Rigid Manipulators," M. S. Thesis, Naval Postgraduate School, Monterey, California, December 1986.
- 19. Meriam, J. L., <u>Engineering Mechanics Vol. 2. Dynamics</u>,

 John Wiley and Sons, 1978.
- 20. Frank, A. A., McGhee, R. B., "Some Considerations Relating to the Design of Autopilots for Legged Vehicles," J. of Terramechanics Vol.6, pp. 23-35, 1969.
- Torby, B. J., <u>Advanced Dynamics for Engineers</u>, pp. 218 HRW Series in Mechanical Engineering, 1984.

INITIAL DISTRIBUTION LIST

		No.	Copies
1.	Defence Technical Information Center Cameron Station Alexandria, Virginia 22304-6145		. 2
2.	Library, Code 0142 Naval Postgraduate School Monterey, California 93943-5002		2
3.	Department Chairman, Code 69 Department of Mechanical Engineering Naval Postgraduate School Monterey, California 93943-5000		1
4.	Professor D. L. Smith, Code 69Sm Department of Mechanical Engineering Naval Postgraduate School Monterey, California 93943-5000		10
5.	Professor Nunn, Code 69 Nn Department of Mechanical Engineering Naval Postgraduate School Monterey, California 93943-5000		1
6.	Professor Chang, Code 69 Ck Department of Mechanical Engineering Naval Postgraduate School Monterey, California 93943-5000	·	1
7.	Ms. Mary Lacey Naval Surface Weapons Center White Oack, Code R402 Robotics Research and Development Center 10908 New Hampshire Avenue Silver Springs, Maryland 20903-5000		2
8.	Kara Kuvvetleri Komutanligi Arastirma Gelistirme Dairesi Bakanliklar, Ankara, Turkey		2
9.	Kara Harp Okulu Komutanligi Ogretim Kurulu Baskanligi Bakanliklar, Ankara, Turkey		2
10.	Topcu ve Fuze Okul Komutanligi Ogretim Kurulu Baskanligi Polatli, Ankara, Turkey		2

2

11. 1st Lieutenant S. Altinok, Turkish Army Eski Bagdat Caddesi No. 46/8 Kucukyali, Istanbul 81570, Turkey

